北師大八級下《不等式的解集》課時練習含答案解析.doc
《北師大八級下《不等式的解集》課時練習含答案解析.doc》由會員分享,可在線閱讀,更多相關《北師大八級下《不等式的解集》課時練習含答案解析.doc(9頁珍藏版)》請在裝配圖網上搜索。
北師大版數學八年級下冊2.3不等式的解集課時練習 一、選擇題 1.已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是這個不等式的解,則實數a的取值范圍是( ) A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2 答案:C 解析:解答:∵x=2是不等式(x-5)(ax-3a+2)≤0的解, ∴(2-5)(2a-3a+2)≤0, 解得:a≤2, ∵x=1不是這個不等式的解, ∴(1-5)(a-3a+2)>0, 解得:a>1, ∴1<a≤2, 故選:C. 分析:根據x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是這個不等式的解,列出不等式,求出解集,即可解答. 2. 下列數值中不是不等式5x≥2x+9的解的是( ) A.5 B. 4 C.3 D. 2 答案:D 解析:解答:移項得,5x-2x≥9, 合并同類項得,3x≥9, 系數化為1得,x≥3, 所以,不是不等式的解集的是x=2. 故選:D. 分析:根據一元一次不等式的解法,移項、合并,系數化為1求出不等式的解集,再根據各選項確定答案. 3.一元一次不等式2(x+1)≥4的解在數軸上表示為( ) A. B. C. D. 答案:A 解析: 解答:由2(x+1)≥4, 可得x+1≥2, 解得x≥1, 所以一元一次不等式2(x+1)≥4的解在數軸上表示為: 故選:A. 分析:首先根據解一元一次不等式的方法,求出不等式2(x+1)≥4的解集,然后根據在數軸上表示不等式的解集的方法,把不等式2(x+1)≥4的解集在數軸上表示出來即可. 4.如果(m+3)x>2m+6的解集為x<2,則m的取值范圍是( ) A.m<0 B.m<-3 C.m>-3 D.m是任意實數 答案:B 解析: 解答:由不等式(m+3)x>2m+6,得 (m+3)x>2(m+3), ∵(m+3)x>2m+6的解集為x<2, ∴m+3<0, 解得,m<-3; 故選B. 分析:由原不等式變形為(m+3)x>2(m+3),解該不等式的下一步是兩邊都除以x的系數(m+3),題中給出的解集是x<2,改變了不等號的方向,所以x的系數是小于0的,據此可以求得m的取值范圍. 5.不等式(a-2012)x>a-2012的解集是x<1.則a應滿足的條件是( ) A.a=2012 B.a<2012 C.a>2012 D.無法確定 答案:B 解析: 解:∵不等式(a-2012)x>a-2012的解集是x<1, ∴a-2012<0, ∴a<2012, 即a應滿足的條件是:a<2012. 故選:B. 分析:首先根據不等式(a-2012)x>a-2012的解集是x<1,應用不等式的性質,可得a-2012<0;然后解一元一次不等式,求出a應滿足的條件即可. 6.關于x的不等式(a-1)x>a-1的解集為x<1,則下列判斷正確的是( ?。? A.a<0 B.a>1 C.a<1 D.a為任意數 答案:C 解析: 解答:∵(a-1)x>a-1的解集為x<1, ∴a-1<0, ∴a<1, 故選:C. 分析:根據不等式的基本性質解出a的取值,即可得出答案. 7.如果式子有意義,那么x的取值范圍在數軸上表示出來,正確的是( ) A. B. C. D. 答案:C 解析:解:由題意得,2x+6≥0, 解得,x≥-3, 故選:C. 分析:根據式子 有意義和二次根式的概念,得到2x+6≥0,解不等式求出解集,根據數軸上表示不等式解集的要求選出正確選項即可. 8. 已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是這個不等式的解,則實數a的取值范圍是( ) A.a>1 B.a≤2 C.1<a≤2 D.1≤a≤2 答案:C 解析:解:∵x=2是不等式(x-5)(ax-3a+2)≤0的解, ∴(2-5)(2a-3a+2)≤0, 解得:a≤2, ∵x=1不是這個不等式的解, ∴(1-5)(a-3a+2)>0, 解得:a>1, ∴1<a≤2, 故選:C. 分析:根據x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是這個不等式的解,列出不等式,求出解集,即可解答. 9. 下列說法正確的是( ) A.x=4是不等式2x>-8的一個解 B.x=-4是不等式2x>-8的解集 C.不等式2x>-8的解集是x>4 D.2x>-8的解集是x<-4 答案:A 解析: 解:因為2x>-8的解為x>-4, 所以A. x=4是不等式2x>-8的一個解,正確; B. x=-4是不等式2x>-8的解集,錯誤; C. 不等式2x>-8的解集是x>4,錯誤; D. 2x>-8的解集是x<-4,錯誤. 故選A. 分析:據題意只要解出不等式2x>-8的解,再用排除法解題即可. 10.下列說法正確的是( ) A.x=1是不等式-2x<1的解 B.x=3是不等式-x<1的解集 C.x>-2是不等式-2x<1的解集 D.不等式-x<1的解集是x<-1 答案:A 解析: 解答:A,解不等式得到解集是x>-,則x=1是不等式-2x<1的解,故正確. B,不等式-x<1的解集是x>-1,∴x=3是它的一個解,而不是解集,故錯誤. C,不等式-2x<1的解集是x>-∴x>-2不是它的解集,故錯誤. D,不等式-x<1的解集是x>-1,故錯誤. 故選A. 分析:解不等式是本題解決的關鍵,特別要注意不等式兩邊同時除以同一個負數時,不等號的方向改變. 11. 如果關于x的不等式(a-1)x>a-1的解集為x<1,那么a的取值范圍是( ) A.a≤1 B.a≥1 C.a<1 D.a<0 答案:C 解析:解答:由于不等式(a-1)x>a-1的解集為x<1, 可知不等號的方向發(fā)生了改變: 可判斷出a-1<0, 所以a<1. 故選C. 分析:首先對不等式組進行化簡,根據不等式的解集的確定方法,就可以得出a的范圍. 12. x=-1不是下列哪一個不等式的解( ) A.2x+1≤-3 B.2x-1≥-3 C.-2x+1≥3 D.-2x-1≤3 答案:A 解析: 解答:因為: A,2x+1≤-3中,x≤-2. B,2x-1≥-3中,x≥-1. C,-2x+1≥3中,x≤-1. D,-2x-1≤3中,x≥-2. 故選A. 分析:解出各個不等式,然后檢驗-1是否在解集內,就可以進行判斷. 13. 設a,b,c,d都是整數,且a<2b,b<3c,c<4d,d<20,則a的最大值是( ) A.480 B.479 C.448 D.447 答案:D 解析: 解答:∵a,b,c,d都是整數,且a<2b,b<3c,c<4d,d<20, ∴d=19,c<419=76, ∴c=75,b<375=225, ∴b=224,a<2224=448, ∴a=447, 故選D. 分析:根據d<20,d都整數,就可以求出d的值,進而就可以得到a,b,c的值. 14. 下列各數中,不是不等式2-3x>5的解的是( ) A.-2 B.-3 C.-1 D.1.35 答案:C 解析: 解答:不等式2-3x>5的解集為x<-1. 四個選項中只有-1不小于-1. 故選C. 分析:先解出不等式的解集,根據不等式解的定義,就能得到使不等式成立的未知數的值,即可作出判斷. 15. 下列說法正確的有( ) ①4是x-3>1的解;②不等式x-2<0的解有無數個;③x>5是不等式x+2>3的解集;④x=3是不等式x+2>1的解;⑤不等式x+2<5有無數個正整數解. A.1個 B.2個 C.3個 D.4個 答案:B 解析: 解:①x-3>1,解得:x>4,則4不是不等式的解,本選項錯誤; ②不等式x-2<0,解得:x<2,則不等式的解有無數個,本選項正確; ③不等式x+2>3,解得x>1,本選項錯誤; ④不等式x+2>1,解得:x>-1,故x=3是不等式的解,本選項正確; ⑤不等式x+2<5,解得:x<3,正整數解為1,2,本選項錯誤, 則其中正確的個數為2個. 故選B. 分析:①求出x-3>1的解集,即可做出判斷;②求出不等式x-2<0的解集即可做出判斷;③求出不等式x+2>3的解集即可做出判斷;④求出不等式x+2>1的解集,即可做出判斷;⑤求出不等式x+2<5的解集即可做出判斷. 二、填空題 16.寫出一個解集為x>1的一元一次不等式:_________. 答案:3x-3>0 | x-1>0 解析: 解答:移項,得3x>3(答案不唯一). 故答案為x>1. 分析:根據一元一次不等式的求解逆用,把1進行移項就可以得到一個;也可以對原不等式進行其它變形,所以答案不唯一. 17. 當a ________ 時,不等式(a-1)x>1的解集是x 答案:>1 解析: 解答: ∵不等式(a-1)x>1的解集是x, ∴a-1>0, ∴a>1, 故答案為:>1. 分析:根據不等式的解集得a-1>0,從而得出a的取值范圍. 18.某中學初中生在做練習冊作業(yè)上解一個一元一次不等式時,發(fā)現(xiàn)不等式右邊的一個數被墨跡污染看不清了,所看到的不等式是1-3x<▇,他查看練習本后的答案知道,這個不等式的解集是x>5,那么被污染的數是 __________ . 答案:-14 解析: 解答:設被污染的數為a,不等式為1-3x<a. 解得: 由已知解集為x>5,得到 解得:a=-14, 故答案為:-14. 分析:設被污染的數為a,表示出不等式的解集,根據已知解集確定出a的值即可. 19. 如果m是實數,且不等式(m+1)x>m+1的解是x<1,那么實數m的值為 __________. 答案:m<-1 解析: 解答:因為(m+1)x>m+1的解集是x<1,不等號的方向改變了, 所以m+1<0,解得m<-1. 故答案為m<-1. 分析:根據兩邊同時除以m+1,不等號的方向改變,可得m+1<0,解得m<-1. 20. 定義一種新的運算:a※b=2a+b,已知關于x不等式x※k≥-1的解集在數軸上表示如圖,則k= __________ 答案:3 解析: 解答:∵a※b=2a+b, ∴x※k=2x+k, ∵x※k≥-1 ∴2x+k≥-1 解得x ∵解集為x≥-1, =-1. ∴k=3, 故答案為:3. 分析:先運用新的運算:a※b=2a+b,求出x※k≥-1的不等式,再解這個不等式,從圖上看出解集為x≥-1,列出一元一次方程求解. 三、解答題 21. 若不等式ax-2>0的解集為x<-2,求關于y的方程ay+2=0的解 答案:2 解析: 解答:∵不等式ax-2>0,即ax>2的解集為x<-2, ∴a=-1, 代入方程得:-y+2=0, 解得:y=2. 分析:根據已知不等式解集確定出a的值,代入方程計算即可求出y的值 22.已知不等式5x+a<3的解集與-2x+5>1的解集相同,試求a的值. 答案:a=-7 解析: 解答:解不等式5x+a<3得到:. 解不等式-2x+5>1得到:x<2. ∵不等式5x+a<3的解集與-2x+5>1的解集相同, ∴=2. 解得 a=-7. 分析:先把a當作已知條件表示出x的取值范圍,再根據兩不等式的解集相同得出關于a的方程,求出a的值即可. 23.若不等式ax-2>0的解集為x<-2,求關于y的方程ay+2=0的解. 答案:y=2 解析:解答:∵不等式ax-2>0,即ax>2的解集為x<-2, ∴a=-1, 代入方程得:-y+2=0, 解得:y=2. 分析:根據已知不等式解集確定出a的值,代入方程計算即可求出y的值. 24.已知x=3是關于x的不等式3x的解,求a的取值范圍. 答案:a<4 解析: 解答:∵x=3是關于x的不等式3x的解, ∴33. 整理 得3a<12, 解得a<4. 故a的取值范圍是a<4. 分析:先根據不等式的解的定義,將x=3代入不等式3x,得到. 9,解此不等式,即可求出a的取值范圍. 25.如果關于x的不等式|x-2|+|x+3|≥a對于x取任意數都成立,則a的取值范圍是多少?并說明理由. 答案:a≤5 解析:解答:∵|x-2|+|x+3|≥5, ∴關于x的不等式|x-2|+|x+3|≥a對于x取任意數都成立, a≤5. 分析:根據線段上的點到線兩端點的距離的和最小,可得答案.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 不等式的解集 北師大 八級下 不等式 課時 練習 答案 解析
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-9461167.html