電大《經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)》參考答案.doc
《電大《經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)》參考答案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《電大《經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)》參考答案.doc(19頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
電大【經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)】形成性考核冊(cè)參考答案 《經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)》形成性考核冊(cè)(一) 一、填空題 1..答案:1 2.設(shè),在處連續(xù),則.答案1 3.曲線+1在的切線方程是 . 答案:y=1/2X+3/2 4.設(shè)函數(shù),則.答案 5.設(shè),則.答案: 二、單項(xiàng)選擇題 1. 當(dāng)時(shí),下列變量為無(wú)窮小量的是( D ) A. B. C. D. 2. 下列極限計(jì)算正確的是( B ) A. B. C. D. 3. 設(shè),則( B ). A. B. C. D. 4. 若函數(shù)f (x)在點(diǎn)x0處可導(dǎo),則( B )是錯(cuò)誤的. A.函數(shù)f (x)在點(diǎn)x0處有定義 B.,但 C.函數(shù)f (x)在點(diǎn)x0處連續(xù) D.函數(shù)f (x)在點(diǎn)x0處可微 5.若,則( B ). A. B. C. D. 三、解答題 1.計(jì)算極限 本類題考核的知識(shí)點(diǎn)是求簡(jiǎn)單極限的常用方法。它包括: ⑴利用極限的四則運(yùn)算法則; ⑵利用兩個(gè)重要極限; ⑶利用無(wú)窮小量的性質(zhì)(有界變量乘以無(wú)窮小量還是無(wú)窮小量) ⑷利用連續(xù)函數(shù)的定義。 (1) 分析:這道題考核的知識(shí)點(diǎn)是極限的四則運(yùn)算法則。 具體方法是:對(duì)分子分母進(jìn)行因式分解,然后消去零因子,再利用四則運(yùn)算法則限進(jìn)行計(jì)算 解:原式=== (2) 分析:這道題考核的知識(shí)點(diǎn)主要是利用函數(shù)的連續(xù)性求極限。 具體方法是:對(duì)分子分母進(jìn)行因式分解,然后消去零因子,再利用函數(shù)的連續(xù)性進(jìn)行計(jì)算 解:原式== (3) 分析:這道題考核的知識(shí)點(diǎn)是極限的四則運(yùn)算法則。 具體方法是:對(duì)分子進(jìn)行有理化,然后消去零因子,再利用四則運(yùn)算法則進(jìn)行計(jì)算 解:原式==== (4) 分析:這道題考核的知識(shí)點(diǎn)主要是函數(shù)的連線性。 解:原式= (5) 分析:這道題考核的知識(shí)點(diǎn)主要是重要極限的掌握。 具體方法是:對(duì)分子分母同時(shí)除以x,并乘相應(yīng)系數(shù)使其前后相等,然后四則運(yùn)算法則和重要極限進(jìn)行計(jì)算 解:原式= (6) 分析:這道題考核的知識(shí)點(diǎn)是極限的四則運(yùn)算法則和重要極限的掌握。 具體方法是:對(duì)分子進(jìn)行因式分解,然后消去零因子,再利用四則運(yùn)算法則和重要極限進(jìn)行計(jì)算 解:原式= 2.設(shè)函數(shù), 問(wèn):(1)當(dāng)為何值時(shí),在處極限存在? (2)當(dāng)為何值時(shí),在處連續(xù). 分析:本題考核的知識(shí)點(diǎn)有兩點(diǎn),一是函數(shù)極限、左右極限的概念。即函數(shù)在某點(diǎn)極限存在的充分必要條件是該點(diǎn)左右極限均存在且相等。二是函數(shù)在某點(diǎn)連續(xù)的概念。 解:(1)因?yàn)樵谔幱袠O限存在,則有 又 即 所以當(dāng)a為實(shí)數(shù)、時(shí),在處極限存在. (2)因?yàn)樵谔庍B續(xù),則有 又 ,結(jié)合(1)可知 所以當(dāng)時(shí),在處連續(xù). 3.計(jì)算下列函數(shù)的導(dǎo)數(shù)或微分: 本題考核的知識(shí)點(diǎn)主要是求導(dǎo)數(shù)或(全)微分的方法,具體有以下三種: ⑴利用導(dǎo)數(shù)(或微分)的基本公式 ⑵利用導(dǎo)數(shù)(或微分)的四則運(yùn)算法則 ⑶利用復(fù)合函數(shù)微分法 (1),求 分析:直接利用導(dǎo)數(shù)的基本公式計(jì)算即可。 解: (2),求 分析:利用導(dǎo)數(shù)的基本公式和復(fù)合函數(shù)的求導(dǎo)法則計(jì)算即可。 解:= = (3),求 分析:利用導(dǎo)數(shù)的基本公式和復(fù)合函數(shù)的求導(dǎo)法則計(jì)算即可。 解: (4),求 分析:利用導(dǎo)數(shù)的基本公式計(jì)算即可。 解: 分析:利用導(dǎo)數(shù)的基本公式和復(fù)合函數(shù)的求導(dǎo)法則計(jì)算即可。 (5),求 解:= (6),求 分析:利用微分的基本公式和微分的運(yùn)算法則計(jì)算即可。 解: (7),求 分析:利用導(dǎo)數(shù)的基本公式和復(fù)合函數(shù)的求導(dǎo)法則計(jì)算 解: (8),求 分析:利用導(dǎo)數(shù)的基本公式和復(fù)合函數(shù)的求導(dǎo)法則計(jì)算 解: (9),求 分析:利用復(fù)合函數(shù)的求導(dǎo)法則計(jì)算 解: = (10),求 分析:利用導(dǎo)數(shù)的基本公式和復(fù)合函數(shù)的求導(dǎo)法則計(jì)算 解: 4.下列各方程中是的隱函數(shù),試求或 本題考核的知識(shí)點(diǎn)是隱函數(shù)求導(dǎo)法則。 (1),求 解:方程兩邊同時(shí)對(duì)x求導(dǎo)得: (2),求 解:方程兩邊同時(shí)對(duì)x求導(dǎo)得: 5.求下列函數(shù)的二階導(dǎo)數(shù): 本題考核的知識(shí)點(diǎn)是高階導(dǎo)數(shù)的概念和函數(shù)的二階導(dǎo)數(shù) (1),求 解: (2),求及 解: =1 《經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)》形成性考核冊(cè)(二) (一)填空題 1.若,則. 2. . 3. 若,則 4.設(shè)函數(shù) 5. 若,則. (二)單項(xiàng)選擇題 1. 下列函數(shù)中,( D )是xsinx2的原函數(shù). A.cosx2 B.2cosx2 C.-2cosx2 D.-cosx2 2. 下列等式成立的是( C ). A. B. C. D. 3. 下列不定積分中,常用分部積分法計(jì)算的是( C ). A., B. C. D. 4. 下列定積分中積分值為0的是( D ). A. B. C. D. 5. 下列無(wú)窮積分中收斂的是( B ). A. B. C. D. (三)解答題 1.計(jì)算下列不定積分 (1) (2) 解:原式 解:原式 (3) (4) 解:原式 解:原式 (5) (6) 解:原式 解:原式 (7) (8) 解:原式 解:原式 2.計(jì)算下列定積分 (1) (2) 解:原式 解:原式 (3) (4) 解:原式 解:原式 (5) (6) 解:原式 解:原式 《經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)》形成性考核冊(cè)(三) (一)填空題 1.設(shè)矩陣,則的元素.答案:3 2.設(shè)均為3階矩陣,且,則=. 答案: 3. 設(shè)均為階矩陣,則等式成立的充分必要條件是 .答案: 4. 設(shè)均為階矩陣,可逆,則矩陣的解.答案: 5. 設(shè)矩陣,則.答案: (二)單項(xiàng)選擇題 1. 以下結(jié)論或等式正確的是( C ). A.若均為零矩陣,則有 B.若,且,則 C.對(duì)角矩陣是對(duì)稱矩陣 D.若,則 2. 設(shè)為矩陣,為矩陣,且乘積矩陣有意義,則為( A )矩陣. A. B. C. D. 3. 設(shè)均為階可逆矩陣,則下列等式成立的是( C ). ` A., B. C. D. 4. 下列矩陣可逆的是( A ). A. B. C. D. 5. 矩陣的秩是( B ). A.0 B.1 C.2 D.3 三、解答題 1.計(jì)算 (1)= (2) (3)= 2.計(jì)算 解 = 3.設(shè)矩陣,求。 解 因?yàn)? 所以 (注意:因?yàn)榉?hào)輸入方面的原因,在題4—題7的矩陣初等行變換中,書寫時(shí)應(yīng)把(1)寫成①;(2)寫成②;(3)寫成③;…) 4.設(shè)矩陣,確定的值,使最小。 解: 當(dāng)時(shí),達(dá)到最小值。 5.求矩陣的秩。 解: → ∴。 6.求下列矩陣的逆矩陣: (1) 解: ∴ (2)A =. 解:→ → ∴A-1 = 7.設(shè)矩陣,求解矩陣方程. 解: ∴ ∴ = 四、證明題 1.試證:若都與可交換,則,也與可交換。 證:∵, ∴ 即 也與可交換。 即 也與可交換. 2.試證:對(duì)于任意方陣,,是對(duì)稱矩陣。 證:∵ ∴是對(duì)稱矩陣。 ∵= ∴是對(duì)稱矩陣。 ∵ ∴是對(duì)稱矩陣. 3.設(shè)均為階對(duì)稱矩陣,則對(duì)稱的充分必要條件是:。 證: 必要性: ∵ , 若是對(duì)稱矩陣,即 而 因此 充分性: 若,則 ∴是對(duì)稱矩陣. 4.設(shè)為階對(duì)稱矩陣,為階可逆矩陣,且,證明是對(duì)稱矩陣。 證:∵ ∴是對(duì)稱矩陣. 證畢. 《經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ)》形成性考核冊(cè)(四) (一)填空題 1.函數(shù)的定義域?yàn)?。答案? 2. 函數(shù)的駐點(diǎn)是,極值點(diǎn)是 ,它是極 值點(diǎn)。答案:=1;(1,0);小。 3.設(shè)某商品的需求函數(shù)為,則需求彈性 .答案:= 4.行列式.答案:4. 5. 設(shè)線性方程組,且,則時(shí),方程組有唯一解. 答案: (二)單項(xiàng)選擇題 1. 下列函數(shù)在指定區(qū)間上單調(diào)增加的是( B ). A.sinx B.e x C.x 2 D.3 – x 2. 設(shè),則( C ). A. B. C. D. 3. 下列積分計(jì)算正確的是( A ). A. B. C. D. 4. 設(shè)線性方程組有無(wú)窮多解的充分必要條件是( D ). A. B. C. D. 5. 設(shè)線性方程組,則方程組有解的充分必要條件是( C ). A. B. C. D. 三、解答題 1.求解下列可分離變量的微分方程: (1) 解: , , (2) 解: 2. 求解下列一階線性微分方程: (1) 解: (2) 解: 3.求解下列微分方程的初值問(wèn)題: (1), 解: 用代入上式得: , 解得 ∴特解為: (2), 解: 用代入上式得: 解得: ∴特解為: (注意:因?yàn)榉?hào)輸入方面的原因,在題4—題7的矩陣初等行變換中,書寫時(shí)應(yīng)把(1)寫成①;(2)寫成②;(3)寫成③;…) 4.求解下列線性方程組的一般解: (1) 解:A= 所以一般解為 其中是自由未知量。 (2) 解: 因?yàn)橹戎?2,所以方程組有解,一般解為 其中是自由未知量。 5.當(dāng)為何值時(shí),線性方程組 有解,并求一般解。 解: 可見(jiàn)當(dāng)時(shí),方程組有解,其一般解為 其中是自由未知量。 6.為何值時(shí),方程組 有唯一解、無(wú)窮多解或無(wú)解。 解: 根據(jù)方程組解的判定定理可知: 當(dāng),且時(shí),秩<秩,方程組無(wú)解; 當(dāng),且時(shí),秩=秩=2<3,方程組有無(wú)窮多解; 當(dāng)時(shí),秩=秩=3,方程組有唯一解。 7.求解下列經(jīng)濟(jì)應(yīng)用問(wèn)題: (1)設(shè)生產(chǎn)某種產(chǎn)品個(gè)單位時(shí)的成本函數(shù)為:(萬(wàn)元), 求:①當(dāng)時(shí)的總成本、平均成本和邊際成本; ②當(dāng)產(chǎn)量為多少時(shí),平均成本最??? 解: ① 當(dāng)時(shí) 總成本:(萬(wàn)元) 平均成本:(萬(wàn)元) 邊際成本:(萬(wàn)元) ② 令 得 (舍去) 由實(shí)際問(wèn)題可知,當(dāng)q=20時(shí)平均成本最小。 (2).某廠生產(chǎn)某種產(chǎn)品件時(shí)的總成本函數(shù)為(元),單位銷售價(jià)格為(元/件),問(wèn)產(chǎn)量為多少時(shí)可使利潤(rùn)達(dá)到最大?最大利潤(rùn)是多少. 解: 令, 解得:(件) (元) 因?yàn)橹挥幸粋€(gè)駐點(diǎn),由實(shí)際問(wèn)題可知,這也是最大值點(diǎn)。所以當(dāng)產(chǎn)量為250件時(shí)利潤(rùn)達(dá)到最大值1230元。 (3)投產(chǎn)某產(chǎn)品的固定成本為36(萬(wàn)元),且邊際成本為(萬(wàn)元/百臺(tái)).試求產(chǎn)量由4百臺(tái)增至6百臺(tái)時(shí)總成本的增量,及產(chǎn)量為多少時(shí),可使平均成本達(dá)到最低. 解: (萬(wàn)元) ∵固定成本為36萬(wàn)元 ∴ 令 解得:(舍去) 因?yàn)橹挥幸粋€(gè)駐點(diǎn),由實(shí)際問(wèn)題可知有最小值,故知當(dāng)產(chǎn)量為6百臺(tái)時(shí)平均成本最低。 (4)已知某產(chǎn)品的邊際成本=2(元/件),固定成本為0,邊際收入 ,求: ①產(chǎn)量為多少時(shí)利潤(rùn)最大? ②在最大利潤(rùn)產(chǎn)量的基礎(chǔ)上再生產(chǎn)50件,利潤(rùn)將會(huì)發(fā)生什么變化? 解: 令 解得:(件) =2470-2500=-25(元) 當(dāng)產(chǎn)量為500件時(shí)利潤(rùn)最大,在最大利潤(rùn)產(chǎn)量的基礎(chǔ)上再生產(chǎn)50件,利潤(rùn)將會(huì)減少25元。 19- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
5 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 經(jīng)濟(jì)數(shù)學(xué)基礎(chǔ) 電大 經(jīng)濟(jì) 數(shù)學(xué) 基礎(chǔ) 參考答案
鏈接地址:http://italysoccerbets.com/p-12809468.html