帶側(cè)臺方套管模具設(shè)計(全套含CAD圖紙)
帶側(cè)臺方套管模具設(shè)計(全套含CAD圖紙),帶側(cè)臺方,套管,模具設(shè)計,全套,CAD,圖紙
摘 要為了熟練掌握模具制造這個占機械行業(yè)很大份額的行業(yè)的知識,對方套管注塑的模具進(jìn)行了設(shè)計。這個設(shè)計又是對四年來所學(xué)機械方面知識的一次綜合運用的機會,所以相對的重要。通過老師的指導(dǎo)下與在圖書館、網(wǎng)絡(luò)自學(xué)了很多模具方面的知識,了解到模具技術(shù)水平的高低已成為衡量一個國家制造業(yè)水平的重要標(biāo)志,并在很大程度上決定著產(chǎn)品的質(zhì)量、效益和新產(chǎn)品的開發(fā)能力。方套管模具是注塑模具中比較典型的模具當(dāng)然也有它自身的特點。典型在于它是方柱形,內(nèi)有貫通的圓形孔,形狀比較規(guī)則,相對比較對稱;它的特點在于柱子的長度相比于截面的圓直徑比較大,所軸向長度很大,而且他的一個面上有圓柱凸臺且有通孔。所以在設(shè)計時必須考慮測抽芯,哈呋分型的設(shè)計等很多問題。在設(shè)計過程中,主要對模具的型芯、型腔、澆注系統(tǒng)、導(dǎo)向系統(tǒng)和脫模系統(tǒng)進(jìn)行了精密的計算和合理的選擇。設(shè)計中主要運用了Pro/E和Auto CAD軟件,根據(jù)制件的零件圖繪制了模具的各個零件圖和裝配圖。關(guān)鍵字:模具;機械;Pro/E;Auto CADABSTRACT In order to master the mold manufacturing machinery industry accounted for a large share of the knowledge of the industry, the other casing injection mold was designed. This design is a four years to learn the mechanical aspects of the knowledge of a comprehensive use of the opportunity, so the relative importance. Through the guidance of the teacher and in the library, the network self-taught a lot of mold knowledge, understand the level of mold technology has become a measure of the level of a national manufacturing an important symbol, and to a large extent determine the quality of the product, Efficiency and new product development capabilities. Square casing mold is a typical mold in injection molds, of course, has its own characteristics. It is characterized by the fact that the length of the column is larger than the circle diameter of the section, and the axial length is large, and it is characterized by the fact that the length of the column is larger than that of the cross section. One side has a cylindrical boss and has a through hole. So in the design must consider the test core, Ha Fu classification design and many other issues. In the design process, the core of the mold, cavity, gating system, guidance system and stripping system for a sophisticated calculation and a reasonable choice. The design of the main use of the Pro / E and Auto CAD software, according to the parts of the parts of the drawing of the mold parts and assembly drawings.Key words: mold; machinery; Pro / E; Auto CAD目 錄第一章 塑件成型工藝分析11.1塑件結(jié)構(gòu)分析11.2 塑件材料分析11.3 注射機的選擇2第二章 擬定模具結(jié)構(gòu)形式42.1 模具分型面的確定42.2 型腔數(shù)量和排列方式的確定5第三章 澆注系統(tǒng)的設(shè)計63.1 主流道的設(shè)計63.2分流道的設(shè)計73.3冷料穴的設(shè)計73.4澆口的設(shè)計8第四章 成型零部件設(shè)計94.1成型零件的結(jié)構(gòu)設(shè)計94.2成型零件的鋼材選用94.3 成型零件工作尺寸的計算9第五章 模架的確定與模板校核115.1模架的確定115.2 模板各尺寸的校核11第六章 排氣系統(tǒng)的設(shè)計12第七章 脫模推出機構(gòu)設(shè)計137.1推桿位置的設(shè)置137.2 推桿形狀及固定形式137.3脫模力的計算137.4側(cè)推出零件尺寸的確定147.5校核推出機構(gòu)作用在塑件上的單位壓應(yīng)力15第八章 冷卻系統(tǒng)設(shè)計168.1冷卻介質(zhì)168.2冷卻系統(tǒng)的簡單計算16第九章 導(dǎo)向與定位結(jié)構(gòu)的設(shè)計18謝辭19參考文獻(xiàn)20第一章 塑件成型工藝分析1.1塑件結(jié)構(gòu)分析所給課題為帶側(cè)臺方套管,該塑料制件外形看似簡單,但在設(shè)計這套模具時,需要同時考慮主型芯過長并且存在著側(cè)抽芯這些問題,故有一定難度。本設(shè)計的塑件壁厚為2mm,適合注塑成型。精度等級按實際公差計算,由于是哈呋分型所以無需設(shè)計脫模斜度,當(dāng)分型時塑件因凸臺的存在,開模后制品掛在成型凸臺的哈呋上,再由側(cè)向脫模機構(gòu)使制品完全脫模。塑件的三維圖與二維圖。見圖1-1下圖所示。圖1-11.2 塑件材料分析(1)使用性能 綜合性能好,沖擊強度,力學(xué)強度較高,尺寸穩(wěn)定,耐化學(xué)性,電氣性能良好;易于成型和機械加工,其表面可鍍鉻,適合制作一般機械零件,減摩零件,傳動零件和結(jié)構(gòu)零件。(2)成型性能據(jù)參考文獻(xiàn)1P20可知,ABS塑料呈淡黃色不透明,非結(jié)晶塑料,ABS是無定型聚合物,無明顯熔點,熔融流動溫度不太高,在160190范圍具有充分的流動性,而且熱穩(wěn)定性較好,在約285時才出現(xiàn)分解現(xiàn)象,因此具有較廣的加工溫度。ABS具有有一定的吸濕性,故在成型之前要對其進(jìn)行干燥處理。 (3)HDPE主要性能指標(biāo)如表11所示。表1-1 HDPE主要性能指標(biāo)密度/g.cm3 1.021.08彎曲模量/Mpa 1400壓縮強度/Mpa 53潔凈度/% 8095 拉伸強度/Mpa 38剪切強度/Mpa 2036屈服強度/Mpa 50拉伸模量/Mpa 1400抗彎強度/Mpa 80熔融溫度/ 160190彎曲強度/Mpa 2540 比熱容/J/kg/ 14701.3 注射機的選擇注塑是ABS塑料最重要的成型方法,在設(shè)計模具時,為了生產(chǎn)出合格的塑料制件,除了應(yīng)掌握注塑成型工藝過程外,還應(yīng)對所選用的注塑機的有關(guān)技術(shù)參數(shù)進(jìn)行全面的了解。注塑機是塑料注塑成型所用的主要設(shè)備。注塑成型時模具安裝在注塑機的動模板上,通過注塑機的液壓鎖模機構(gòu)使動模具處于合模狀態(tài)。這就需要較核該模具所需要的鎖模力。是否在注塑機允許范圍內(nèi)。另外模具的開模行程和最大閉和高度都應(yīng)該通過較核。經(jīng)分析,本設(shè)計適應(yīng)采用螺桿臥式注塑機。其螺桿式注塑機的工藝參數(shù)如下表1-2:表1-2 材料所需的注塑機工藝參數(shù)注塑機類型噴嘴形式噴嘴溫度/料筒溫度/螺桿式注塑機XS-ZY-500直通式180190前段中段后段200210210230180200模具溫度/注射壓力/ MPa保壓力/ MPa注射時間/s50707090507035保壓時間/s冷卻時間/s成型周期/s成型溫度/153015304070160190根據(jù)以上的注塑機的工藝參數(shù)以及注塑量、注塑壓力等各方面要求先初步選用XS-ZY-500型臥式注塑機,該注塑機的主要技術(shù)參數(shù)如下表1-3:根據(jù)參考文獻(xiàn)1P70可知,以注塑機注射能力為基礎(chǔ),每次在注射量不超過注塑機最大注射量的80%,按公式計算模具的型腔數(shù):n=(0.8G-m2)/m1式中:G注塑機的最大注塑量(g); m1單個塑件的質(zhì)量(g);m2澆注系統(tǒng)質(zhì)量(g)。n=(0.8x500-15)/95n4.05模具型腔個數(shù)選一模四腔。表1-3 XS-ZY-500型臥式注塑機主要技術(shù)參數(shù)注塑機型號XS-ZY-500理論注塑量/ cm3500注塑壓力/MPa140鎖模力/10kN350螺桿直徑/mm65開模行程/mm700最大注射面積/ cm21000最大模具厚度/mm450最小模具厚度/mm300噴嘴球半徑/mm18噴嘴孔直徑/mm7.5推出兩側(cè)中心孔徑/mm150推出兩側(cè)孔徑/mm24.5推出兩側(cè)孔距/mm530第二章 擬定模具結(jié)構(gòu)形式2.1 模具分型面的確定分型面是分開模具取出塑件的面,是模具動、定模的分界面。分型面的選擇受到塑料件的結(jié)構(gòu)形狀,壁厚,尺寸精度,嵌件的形狀及其位置,塑料件在模具中成型的位置,脫模的方法,澆注系統(tǒng)的形式及位置,模具的類型,排氣的方式,模具加工制造的工藝甚至成型設(shè)備結(jié)構(gòu)等因素的影響,一般選擇分型面是要考慮以下幾點:1.便于塑料件的脫模,開模時,塑料件應(yīng)盡可能的留在動模之中,但本設(shè)計中,考慮到經(jīng)濟性以及模具的緊湊性,故將主型芯設(shè)計在定模一側(cè)。分型面的選擇應(yīng)有利于側(cè)面分型與抽芯;要有利于合理安排塑料件在模具中的方位,即型腔的方位;2.要滿足塑料件外觀質(zhì)量要求3.能保證塑料件的尺寸精度要求,可以滿足其使用,配合要求4.有利于防止溢料和考慮飛邊在塑料件上的位置,以及飛邊修出的難易程度5.要有利于排氣根據(jù)本設(shè)計中的塑料件的結(jié)構(gòu)特點以及設(shè)計要求,結(jié)合分型面選擇原則等因素,本設(shè)計屬于型腔完全在哈呋一側(cè),故分型面如圖2-1所示:圖2-12.2 型腔數(shù)量和排列方式的確定1.型腔數(shù)目的確定本設(shè)計通過計算為一模四件,故型腔數(shù)量為一模四腔。2.型腔的布置型腔的排列涉及模具的尺寸,澆注系統(tǒng)的平衡,抽芯機構(gòu)的設(shè)計,模溫調(diào)節(jié)系統(tǒng)的設(shè)計及模具在開模時的受力平衡等問題,因此在設(shè)計中應(yīng)根據(jù)各方面情況進(jìn)行綜合考慮,并在設(shè)計中進(jìn)行必要的修改,以達(dá)到完善的結(jié)果。本設(shè)計中,由于制件是帶側(cè)孔的方套管,加之要求一模四件,并且結(jié)合澆注系統(tǒng)的合理性為了簡化模具結(jié)構(gòu)和均衡進(jìn)料,故采取單排列式S形的方式布置。第三章 澆注系統(tǒng)的設(shè)計3.1 主流道的設(shè)計主流道通常位于模具中心塑料熔體的入口處,他將注射機噴嘴注射出的熔體導(dǎo)入分流道或型腔中。主流道的形狀為圓錐形,以便熔體的流動和開模時主流道凝料順利拔出。主流道的尺寸直接影響到熔體的流動速度和沖模時間。另外,由于其與高溫塑料熔體及注射機噴嘴反復(fù)接觸,因此設(shè)計中常設(shè)計成可拆卸更換的澆口套。1.主流道尺寸(1)主流道長度:小型模具L應(yīng)盡量小于60mm,本次設(shè)計中初取50mm進(jìn)行設(shè)計。(2)主流道小端直徑:d=注射機噴嘴尺寸+(0.11)mm=(3+0.5)=3.5mm (3)主流道大端直徑:d2=d+2Ltan8mm,式中=4。 (4)SR=注射機噴嘴球頭半徑+(12)mm=(14+2)=16mm2.主流道的凝料體積3.主流道當(dāng)量半徑 4.主流道澆口套的形式主流道襯套為標(biāo)準(zhǔn)件可選購。主流道小端入口處與入口處與注射機噴嘴反復(fù)接觸,易磨損。對材料的要求較嚴(yán)格,因而盡量小型注射模可以將主流道澆口套與定位圈設(shè)計成一個整體,但考慮上述因素通常仍然將其分開來設(shè)計,以便于拆卸更換。同時也便于選用優(yōu)質(zhì)鋼材進(jìn)行單獨加工和熱處理。設(shè)計中常采用碳素工具鋼(T10A),熱處理淬火表面硬度為5055HRC。其結(jié)構(gòu)如下圖3-1所示:圖3-13.2分流道的設(shè)計分流道的設(shè)計應(yīng)能使塑料熔體的流向得到平穩(wěn)的轉(zhuǎn)換,并且能夠充分的充滿型腔;要保證各型腔之間的距離恰當(dāng),以保證排布冷卻水道,螺釘?shù)?,并有足夠的截面積承受注塑力,同時還要盡量縮短流道的長度,降低澆注系統(tǒng)的凝料重量,是溫度降和壓力降盡可能的低。并且型腔和澆注系統(tǒng)的投影面積的重心應(yīng)盡量接近注塑機的鎖模力的中心。分流道的布置:在多型腔注射模具中,分流道的設(shè)置形式分為平衡式和非平衡式兩種,一般以平衡式設(shè)置布局為佳,這樣可以達(dá)到各型腔能夠均衡的充填熔體,并且同時充滿各個型腔。平衡式是指主流道到各個型腔的分流道,其長度,形狀,斷面尺寸都對應(yīng)相等,因此可以獲得較高的制件精度,本設(shè)計中由于情況特殊,綜合所有因素考慮,只要采取中心對稱式排布的方式才最合理。分流道截面形狀:實際設(shè)計中所采用的分流道斷面形狀有圓形,半圓形,矩形和梯形,U形。U形流動效率低于圓形與正六角形,但加工容易,又比圓形與正方形流道容易脫模,故本設(shè)計中采用U形分流道。1.分流道的長度 根據(jù)4個型腔的結(jié)構(gòu)設(shè)計,L分 取150mm。2.分流道的當(dāng)量直徑 因為該塑件的質(zhì)量m=pV=155.26g,所以分流道的當(dāng)量直徑為D分=0.2654=6.13mm。3.分流道的界面形狀 本設(shè)計采用U形截面。分流道的截面尺寸 D=6.13mm,所以H取6R取2.5。4.凝料體積 (1)分流道的長度L=1502=300(2)分流道截面積A=29.5(3)凝料體積V=2LA=30029.5=8850=8.855.分流道的表面粗糙度和脫模斜度 分流道的表面粗糙度要求不是很高,一般取Ra1.252.5即可,此處取1.6,另外脫模斜度在510之間,這里的脫模斜度為5。3.3冷料穴的設(shè)計在完成一次注射循環(huán)的間隔,考慮到注射機噴嘴和主流道入口這一小段熔體因輻射散熱而低于所要求的塑料熔體的溫度,從噴嘴端部到注射機料筒以內(nèi)約1025mm的深度有個溫度逐漸升高的區(qū)域,這時才達(dá)到正常的塑料熔體溫度。位于這一區(qū)域內(nèi)的塑料的流動性能及成型性能不佳,如果這里溫度相對較低的冷料進(jìn)入型腔,便會產(chǎn)生次品。為克服這一現(xiàn)象的影響,用一個井穴將分流道延長以接收冷料,防止冷料進(jìn)入澆注系統(tǒng)的流道和型腔,把這一用來容納注射間隔所產(chǎn)生的冷料的井穴稱為冷料穴。冷料穴位于分流道所在的動模板上,其作用是收集熔體前鋒的冷料,防止進(jìn)入型腔而影響塑件的質(zhì)量。分流道冷料穴如圖3-2所示:圖3-23.4澆口的設(shè)計該塑件要求不允許有裂紋和變形缺陷,表面質(zhì)量要求較高,采用一模四腔注射,為便于調(diào)整充模時間的剪切速率和封閉時間,因此采用點矩形澆口,有5的脫模斜度,其截面形狀簡單,易于加工,便于試模后的修正,且開設(shè)在哈呋上,從哈呋型腔的邊緣進(jìn)料。側(cè)澆口尺寸的確定:H=nt=0.72=1.4mm B=cmL一般取0.52.5 L=0.7mm第四章 成型零部件設(shè)計4.1成型零件的結(jié)構(gòu)設(shè)計(1)凹模的結(jié)構(gòu)設(shè)計 凹模是用來成型制品外表面的模具零件,其結(jié)構(gòu)與制品的形狀、尺寸、使用要求、生產(chǎn)批量及模具的加工方法等有關(guān),常用的結(jié)構(gòu)形式有整體式、嵌入式、組合式和鑲拼組合式四種類型。根據(jù)對塑件的結(jié)構(gòu)分析本設(shè)計中采用組合式凹模,其特點是結(jié)構(gòu)簡單,牢固可靠,不容易變形,成型出來的制品表面不會有鑲拼接縫的溢料痕跡,還有助于減少注射模中成型零部件的數(shù)量,便并于脫模。(2)凸模的結(jié)構(gòu)設(shè)計 凸模是用來成型制品內(nèi)表面的模具零件,常用的結(jié)構(gòu)形式有整體式和組合式兩種類型由于凹、凸模件具有足夠的強度、剛度、硬度、耐磨性、耐腐蝕性以及足夠低的表面粗糙度。如果凹凸模都采用整體式,優(yōu)點是加工成本低,但是常用模架的模板材料為中碳鋼,用作凹、凸模,使用壽命短,若選用好材料的模板制作整體的凹凸模,則制造成本較高。綜合考慮以上因素,凸模采用整體嵌入式。這樣既保證了模具的使用壽命,又不浪費價格昂貴的材料,并且損壞后,維修、更換方便。4.2成型零件的鋼材選用根據(jù)對成型塑件的綜合分析,該塑件的成型零件要有足夠的剛度、強度、耐磨性及良好的抗疲勞性能,同時考慮它的機械加工性能和拋光性能。又因為該塑件為大批量生產(chǎn),所以構(gòu)成成型腔的組合式凹模采用45鋼。對于凸模來說,由于脫模時與塑件磨損嚴(yán)重,因此鋼材也選用45鋼。鋼材淬火處理,硬度為4348HRC。4.3 成型零件工作尺寸的計算型腔和型芯徑向尺寸的計算。根據(jù)塑料模具成型手冊:已知塑料件尺寸為Ls,取1/23/4,本設(shè)計中取=0.5,而磨損量為z = /6 。z平均收縮率為Scp,本設(shè)計中取0.0055。設(shè)型腔的徑向尺寸為LM 按平均值計算方法可得下式:(1)主型腔徑向尺寸計算為:Ls =30mm (2)側(cè)型腔徑向尺寸計算為:Ls =20mm(3)主型芯的徑向尺寸計算為:已知塑料件的尺寸為ls =26mm(4)側(cè)型心徑向尺寸計算為:ls =16mm(5)主型腔深度尺寸計算為:Hs=150mm(6)主型芯高度尺寸計算為:hs =150mm (7)側(cè)型腔深度尺寸計算為:Hs=6mm(8)側(cè)型芯高度尺寸計算為:hs=8mm第五章 模架的確定與模板校核5.1模架的確定1.模架類型的確定根據(jù)本設(shè)計中模具的總體結(jié)構(gòu):動模兩板塊,一個槽塊,采用推桿脫模機構(gòu),因此選用A2型模架,但是由于槽塊厚度較大,需要廠家另行定做,其余部分均按標(biāo)準(zhǔn)選擇模架。2.模具系列的確定根據(jù)模具各部分的設(shè)計以及型腔的安排,本設(shè)計中型腔是直線分布的,故模架的長度要滿足型腔排列的總長,由于每個型腔的徑向尺寸不大,故寬度方面沒有太大的要求,只要足夠大于型腔的徑向尺寸即可;綜合考慮各方向的因素,本設(shè)計中最終決定選用尺寸選擇模架序號為8號系列模具。3.動模板、支撐塊厚度的確定由于標(biāo)準(zhǔn)模架大致已經(jīng)選定,故按照標(biāo)準(zhǔn)選取動模座板的尺寸為25mm。動模板的厚度,即標(biāo)準(zhǔn)模架中A板的厚度,根據(jù)塑料成型模具設(shè)計手冊選取A板厚度為32mm。槽塊,及本設(shè)計中的中間板,由于該板做成了槽塊,長度要求很大,故需要廠家另行訂制作,在本設(shè)計中,為滿足長度需求,動模板B的厚度250mm。本設(shè)計中,由于分型的距離很小,所以對墊塊C的要求不大,本設(shè)計中墊塊C取標(biāo)準(zhǔn)模架中的較小值即可,即墊塊高度C為100mm。其余尺寸如頂板的厚度按標(biāo)準(zhǔn)模架為25mm,頂桿固定板厚度相應(yīng)為20mm。剩余零件尺寸也均按標(biāo)準(zhǔn)模架選用。5.2 模板各尺寸的校核1.模架平面尺寸 315315mm345345mm(拉桿間距) 合格2.模具高度尺寸415mm,350mm(最小)415mm450mm(最大) 合格3.模具開模行程 s=65mm325mm(開模行程) 合格。第六章 排氣系統(tǒng)的設(shè)計當(dāng)塑料熔體填充型腔時,必須順序排出型腔及澆注系統(tǒng)內(nèi)空氣及塑料受熱或凝固產(chǎn)生的低分子揮發(fā)氣體。如果型腔內(nèi)因各種原因而產(chǎn)生的氣體不被排干凈,一方面將會在塑件上產(chǎn)生氣泡,接縫表面輪廓不清及充填缺料等成型缺陷,另一方面氣體受壓,體積縮小而產(chǎn)生高溫會導(dǎo)致塑件局部碳化或燒焦,同時積存的氣體還會產(chǎn)生反向壓力而降低充模速度,因此設(shè)計型腔時必須考慮排氣問題。通常排氣方式有以下幾種:1用分型面排氣2用型芯和模板配合間隙排氣3利用頂桿間隙排氣4用側(cè)型芯運動間隙排氣5開排氣槽本設(shè)計屬于中小型注塑模具,結(jié)合制件本身特點,前四種排氣方式都可以在本設(shè)計中應(yīng)用到,故采用分型面和推桿制件與側(cè)型芯以及頂桿孔之間的間隙排氣。第七章 脫模推出機構(gòu)設(shè)計本課題中,在模具設(shè)計總方案決定了該設(shè)計中的脫模機構(gòu)的類型,由于最終塑料制件留在側(cè)型芯中,故脫模機構(gòu)為一個主推帶動側(cè)推的裝置。推出裝置的設(shè)計原則必須滿足:1.推出機構(gòu)必須可靠:推出裝置的設(shè)計,必須使其工作可靠、配合合理、動作靈活、制造方便、更換容易、機構(gòu)本身要具有足夠的剛度和強度,足以克服脫模阻力。2.保證塑料制件不變形、不損壞:故必須正確分析塑料件在成形之后對于型腔的附著力的大小和所在位置,以便合理的選擇推出方式以及確定合理的推出點,使之布置均勻合理,本課題中,最終塑料制件留在側(cè)型芯中,故必須分析計算出塑料因收縮對側(cè)型芯的包裹力,推出裝置要大于這個包裹力才能將制件從側(cè)型芯上推出,并且應(yīng)該合理安排推桿的數(shù)量,分布方式。3.保證塑料表觀質(zhì)量良好:設(shè)計推出機構(gòu)時,要求推出塑料件的位置要盡量的選擇在塑件的內(nèi)部或者是對塑料件表觀無大的影響的端面等部位結(jié)合這些原則和本課題中塑料制件的特點,加之推桿零件結(jié)構(gòu)簡單、加工、裝配及更換方便,滑動阻力較小,使用效果好,設(shè)置布局自由度大,故選擇推桿推出機構(gòu)。7.1推桿位置的設(shè)置結(jié)合本課題的方案圖,則推桿應(yīng)設(shè)置在脫模力大的地方,側(cè)型芯周圍塑料件對型芯的包緊力很大,所以可以在型芯外側(cè)塑料件的端面上設(shè)置推桿,本設(shè)計初步采用平均每個制件采用兩根推桿的平衡推出布置7.2 推桿形狀及固定形式綜合分析,A型推桿結(jié)構(gòu)簡單而且應(yīng)用廣泛,故采用A型推桿,尾部采用臺肩式結(jié)構(gòu),臺肩的直徑D與推桿的直徑約差46mm,推桿直徑d與模板上相應(yīng)的推桿孔采用H8/f7或者H8/f8的間隙配合。推桿固定端與推桿固定板之間通常采用單邊為0.5mm的間隙,這樣設(shè)計既可以降低加工要求,又能在多推桿結(jié)構(gòu)情況下,不因為由于各板上的推桿孔的加工誤差引起的軸線不一致而導(dǎo)致阻滯或卡死現(xiàn)象,本設(shè)計中推桿采用T10A碳素工具鋼,熱處理硬度要求為5055HRC,工作端配合部分的表面粗糙度要低于Ra0.8m 。7.3脫模力的計算由于圓形孔為通孔,故脫模力即為制件對側(cè)型芯的包緊的脫模阻力,在脫模力計算中,將=r/t10的制品視為薄壁制品,反之,視為厚壁制品。 t制品的壁厚2(mm) r型芯的平均半徑8(mm) =r/t=8/2=410,故本設(shè)計中為厚壁制品本設(shè)計中側(cè)型芯為厚壁圓形,故制品對型芯包緊的脫模阻力計算公式如下: 式中:E塑料的拉伸彈性模量(MPa),ABS的E為1.911.98GPa,本設(shè)計中E=1.95GPa S塑料的平均收縮率,ABS的S為(0.3%0.8%),本設(shè)計中取S=0.5%=0.005 L被包型芯長度(mm),本設(shè)計中L=7mm f制品與鋼材表面之間的靜摩擦系數(shù),ABS的f取0.45型芯的脫模斜度,取0 塑料的泊松比,ABS的取0.3 K1是由和決定的無因次數(shù) K2厚壁制件的計算系數(shù),其計算公式為:故側(cè)抽芯的脫模力為96.364=385.44N7.4側(cè)推出零件尺寸的確定側(cè)頂桿直徑的確定:根據(jù)歐拉公式,可得推桿直徑d(mm)的公式: 式中:d推桿的最小直徑,mm k安全系數(shù),可取k=1.5 L側(cè)頂桿的長度,L=33mm F脫模力,F(xiàn)=385.44N n推桿數(shù)目,n=8 E鋼材的彈性模量, 得d=7.86mm 綜合考慮,最終采用8根直徑為8mm推桿。 同上得出主推桿的的脫模力 推桿直徑的確定:根據(jù)壓桿穩(wěn)定公式,可得推桿直徑d(mm)的公式: 式中:d推桿的最小直徑,mm K安全系數(shù),可取K=1.5 L推桿的長度,L=128mm F脫模力,F(xiàn)=1662N n推桿數(shù)目,n=4 E鋼材的彈性模量,MPa 得d=13.75mm 故取推桿直徑為d=15mm7.5校核推出機構(gòu)作用在塑件上的單位壓應(yīng)力 推出面積= =402.12 推出應(yīng)力=1.15MPa22.5MPa 合格第八章 冷卻系統(tǒng)設(shè)計 模具的冷卻系統(tǒng)的設(shè)計關(guān)系到塑料制件質(zhì)量以及生產(chǎn)效率,合理的冷卻系統(tǒng)能改善塑料成型,減少塑件應(yīng)力的變形,改善塑料外觀質(zhì)量,提高塑料物理性能及提高生產(chǎn)效率。冷卻系統(tǒng)的計算很麻煩,在此只進(jìn)行簡單的計算。設(shè)計時忽略磨具因空氣對流,輻射以及與注射接觸所散發(fā)的熱量,按單位時間內(nèi)塑料溶體凝固時所放出的熱量應(yīng)等于冷卻水所帶走的熱量。8.1冷卻介質(zhì) ABS屬于中等粘度材料,其成型溫度計模具溫度分別為200和5080。所以磨具溫度初步選定為50,用常溫水隊模具進(jìn)行冷卻。8.2冷卻系統(tǒng)的簡單計算 1.單位時間內(nèi)注入模具的塑料溶體的總質(zhì)量w(1)塑料制品的體積 (2)塑料制品的質(zhì)量m=v=152.221.02=155.26g(3)塑件壁厚為2mm,可以查表知t冷=20.5s。取注射時間t注=4s,脫模時間為18s,則注射周期:t=t注+t冷+t脫=20.5+4+18=42.5s。由此得每小時的注射次數(shù):N=(3600/42.5)=85次。(4)單位時間內(nèi)注入模具中的塑料熔體的總質(zhì)量:W=Nm=631.9885=53.71kg/h 2.確定單位質(zhì)量的塑件在凝固時所放出的熱量Qs,查表知ABS的單位熱流量Qs的取值范圍在(310400)kj/kg之間,故可取Qs=370kj/kg 3.計算冷卻水的體積流量qv 設(shè)冷卻入水口的水溫2=22,出水到的水溫為1=25,取水的密度=1000kg/m3,水的比熱容c=4.187kj/(kg)。則根據(jù)公式得=53.71370/(6010004.187(25-22)/min=0.02637/min 4.確定冷卻水路的直徑d 當(dāng)qv=0.02637/min時,為了使冷卻水處于湍流狀態(tài),取模具冷卻水孔的直徑d=0.01m。 5.冷卻水在管內(nèi)的流速VV=4qv/(60)=5.596m/s 6.求冷卻壁管與水交界面的膜傳熱系數(shù)h 因為平均水溫為23.5,查表知f=0.67,則有 7.計算冷卻水通道的導(dǎo)熱總面積A=53.71370/(3.21510000(50-(22+25)/2)=0.0233 8.計算模具所需冷卻水管的總長度L 9.冷卻水管的根數(shù)x 設(shè)每條水管的根數(shù)l=315mm,則冷卻水路的根數(shù)為X=L/l=741.7/315=2.354根本設(shè)計中由于塑件的總長太長,要使制件冷卻均勻,且滿足模架要求,最終決定采用單個哈呋三條總共六條直徑為10mm的冷卻水道直線形布置,以保證制件均勻冷卻。冷卻水道布置如下圖8-1所示:圖8-1第九章 導(dǎo)向與定位結(jié)構(gòu)的設(shè)計導(dǎo)向機構(gòu)對于模具是必不可少的部件,因為模具在閉合時要求有一定的方向和位置,所以必須有導(dǎo)向機構(gòu)。導(dǎo)向機構(gòu)只要起導(dǎo)向、定位作用,并且承受一定的側(cè)壓力,導(dǎo)向機構(gòu)的類型有導(dǎo)柱導(dǎo)向和錐面定位兩種形式。當(dāng)采用標(biāo)準(zhǔn)模架時,因模架本身帶有導(dǎo)向裝置,故可以采用標(biāo)準(zhǔn)模架本身自帶的導(dǎo)柱,本設(shè)計中采用A型導(dǎo)柱,型導(dǎo)套,導(dǎo)柱導(dǎo)套數(shù)量為四個,導(dǎo)柱的直徑為32mm,導(dǎo)柱前端做成錐臺形,為了使材料具有堅硬而耐磨的表面,韌而不易折斷的心部,因而本設(shè)計中選用T10A鋼經(jīng)過淬火處理,硬度為5660HRC,導(dǎo)柱的固定部分的表面粗糙度為,而導(dǎo)向部分的表面粗糙度為。其中導(dǎo)柱固定部分與模板之間通常采用H7/m6的過渡配合方式,而導(dǎo)柱的導(dǎo)向部分與相應(yīng)導(dǎo)套采用H7/f7的間隙配合方式。謝 辭三個月的畢業(yè)設(shè)計如白駒過隙,轉(zhuǎn)瞬即逝?;厥走@些日子里,我收獲了非常多,盡管在畢業(yè)設(shè)計中,我也苦惱過、迷茫過,但是通過自己不斷地努力,還有老師的幫助,同學(xué)和家人的鼓勵,我依舊順利的完成了自己的畢業(yè)設(shè)計。雖然畢業(yè)設(shè)計并沒有想象中的完美,其中還是有很多問題和瑕疵,但是有時候做一件事情,不能太在乎結(jié)果,而是要重視其中的過程,因為畢業(yè)設(shè)計的結(jié)束并不是最終的結(jié)果,整個過程中我們學(xué)習(xí)到的知識,才是真正最有價值的東西。感謝我的畢設(shè)老師林盛老師,在他的悉心指導(dǎo)之下,我的畢業(yè)設(shè)計才得以順利的進(jìn)行和完成。雖然林老師的工作非常繁忙,但是他總會盡可能每周都抽出時間與我們每個人見面,親自驗收我們每個人的進(jìn)度,并給予指導(dǎo)和修改意見,有不懂的地方也及時為我們答疑解惑,在這里向林老師表示最衷心的感謝。其次,在這三個月的日子里,我的同學(xué),導(dǎo)員還有我的家人也一直給予我鼓勵,他們是我完成畢業(yè)設(shè)計的不竭動力,我很幸運我的身邊能有你們。大學(xué)生活即將匆匆忙忙地過去,雖然我在這幾年中并沒有一直在努力的學(xué)習(xí),甚至有一段時間對學(xué)習(xí)很厭惡。但這并不能影響著幾年我所經(jīng)歷的事情。我可以無悔地說:我之后努力過。大學(xué)四年,但它給我的影響卻不能用時間來衡量,這四年以來,經(jīng)歷過的所有事,所有人,都將是我以后生活回味的一部分,是我為人處事的指南針。就要離開學(xué)校,走上工作的崗位了,這是我人生歷程的又一個起點,在這里祝福大學(xué)里跟我風(fēng)雨同舟的朋友們,一路走好,未來總會是絢爛繽紛。最后感謝我的母校給我提供的求學(xué)機會,使我度過了四年寶貴的時光。這四年中,通過各位任課老師知識傳授,使我學(xué)到了不少的東西,這將使我在以后的學(xué)習(xí)和工作中處理問題的方法和經(jīng)驗更加豐富。參考文獻(xiàn)1 余冬容,程勝文主編.塑料成型工藝與模具設(shè)計M.北京:科學(xué)出版社,2005.55-1752 劉靖巖,郭慶梁,遲旭,宋柏.模具設(shè)計與制造M.北京:中國輕工業(yè)出版社,2005.3 袁國定.模具常用機構(gòu)設(shè)計M.北京:機械工業(yè)出版社,2003.4 周其炎.Moldflow 5.0基礎(chǔ)與典型范例M.北京:電子工業(yè)出版社,2007.5 何慶.機械制造專業(yè)畢業(yè)設(shè)計指導(dǎo)與范例M.北京:化學(xué)工業(yè)出版社,2008.6 齊衛(wèi)東主編.注塑模具圖集M.北京:北京理工大學(xué)出版社,2007.7 吳生緒.塑料成型模具設(shè)計手冊M.北京:機械工業(yè)出版社,2008.8 鄒繼強.塑料模具設(shè)計參考資料匯編M.北京:清華大學(xué)出版社,2005.9 王永平.注塑模具設(shè)計M.機械工業(yè)出版社,北京,2005.10 單巖,王蓓,王剛.Moldflow模具分析技術(shù)基礎(chǔ)M.北京:清華大學(xué)出版社,2004.11 王剛,單巖.Moldflow模具分析應(yīng)用實例M.北京:清華大學(xué)出版社,2005.12 駿毅科技. Pro/ENGINEER4.0快速入門指導(dǎo)M. 北京:清華大學(xué)出版社,2007.13 楊占堯.精密高效長壽命注塑模具典型結(jié)構(gòu)圖例M. 北京:化學(xué)工業(yè)出版社,2005.14 葉偉昌.機械工程及自動化簡明設(shè)計手冊M.北京:機械工業(yè)出版社,2001.15 徐錦康.機械設(shè)計M.北京:機械工業(yè)出版社,2001.16 寧汝新,趙汝嘉.CAD/CAM技術(shù)M.北京:機械工業(yè)出版社,2003.17 章躍.機械制造專業(yè)英語M.北京:機械工業(yè)出版社,2003.18 黃虹.塑料成型加工與模具M(jìn).北京:化學(xué)工業(yè)出版社,2005.19 Huebner K H, Dewhirst D L, Smith D E, et al. The Finite Element Method for EngineersJ.Applied Mechanics Reviews, 1975, 54(4).20ORIGINAL ARTICLEOptimization of injection molding process parametersusing integrated artificial neural network modeland expected improvement function methodHuizhuo Shi&Yuehua Gao&Xicheng WangReceived: 16 October 2008 /Accepted: 24 September 2009 /Published online: 20 November 2009#Springer-Verlag London Limited 2009Abstract In this study, an adaptive optimization methodbased on artificial neural network model is proposed tooptimize the injection molding process. The optimizationprocess aims at minimizing the warpage of the injectionmolding parts in which process parameters are designvariables. Moldflow Plastic Insight software is used toanalyze the warpage of the injection molding parts. Themold temperature, melt temperature, injection time, packingpressure, packing time, and cooling time are regarded asprocess parameters. A combination of artificial neuralnetwork and design of experiment (DOE) method is usedto build an approximate function relationship betweenwarpage and the process parameters, replacing the expensivesimulation analysis in the optimization iterations. Theadaptive process is implemented by expected improvementwhich is an infilling sampling criterion. Although the DOEsize is small, this criterion can balance local and global searchand tend to the global optimal solution. As examples, acellular phone cover and a scanner are investigated. Theresults show that the proposed adaptive optimization methodcan effectively reduce the warpage of the injection moldingparts.Keywords Injectionmolding.Warpage.Optimization.Design ofexperiment.Artificialneuralnetwork.Expectedimprovementfunction1 IntroductionInjection molding is the most widely used process forproducingplastic products.The entireinjectionmoldingcyclecan be divided into three stages: filling, post-filling, and moldopening 1. During production, warpage is one of the mostimportantqualityproblems,especiallyforthethin-shellplasticproducts.Severalresearcheshavebeendevotedtothewarpageoptimization of thin-shell plastic parts 29. Warpage can bereduced by modifying the geometry of parts, or changing thestructure of molds, or adjusting the process parameters.The part design and mold design are usually determined inthe initial stage of product development, which cannot beeasily changed. Therefore, optimizing process parameters isthe most feasible and reasonable method.It is an important issue in plastic injection molding topredict and optimize the warpage before manufacturingtakes place. Many literatures have been devoted to warpageoptimization. Lee and Kim 10 optimized the wallthickness and process conditions using the modifiedcomplex method to reduce warpage and obtained areduction in warpage of over 70%. Sahu et al. 11optimized process conditions to reduce warpage by acombined implementation of the modified complex methodand design of experiments. Their results showed that thesemethods can effectively reduce warpage.Although these methods can reduce warpage effectively,they are costly and time-consuming because they performlots of expensive function evaluations. Compared to thesemethods, the Taguchi method 1214 is easier to performandcananalyze the effective factors,but itcanonlyobtainthebetter combination of process parameters, not the optimalsolution in the design space.The warpage is a nonlinear and implicit function of theprocess parameters, which is typically estimated by theH. Shi:Y. Gao:X. Wang (*)State Key Laboratory of Structural Analysis for IndustrialEquipment, Dalian University of Technology,Dalian,116024 Liaoning, Chinae-mail: Int J Adv Manuf Technol (2010) 48:955962DOI 10.1007/s00170-009-2346-7solution of finite element equations. In general, a complicatedtask often requires huge computational cost. Hence, in orderto reduce the computational cost in warpage optimization,many researchers have introduced some surrogate models,such as Kriging surrogate model, artificial neutral network(ANN), response surface method, and support vector regres-sion. Gao et al. 1517 optimized process conditions toreduce the warpage by combining the kriging surrogatemodel with modified rectangular grid approach or expectedimprovement (EI) function method. Kurtaran et al. combinedthe genetic algorithms with a neural network or responsesurface method to optimize the process parameters forreducing the warpage of plastic parts 18, 19. Zhou et al.20 optimized injection molding process using supportvector regression model and genetic algorithm. Their resultshave shown that the methods based on the surrogate modelcan reduce the high computational cost in the warpageoptimization, and the genetic algorithm can be used toapproach to the global optimal design effectively.In this study, the mold temperature, melt temperature,injection time, packing pressure, packing time, and coolingtime are considered as process parameters. A small-sizedesign of experiment is obtained by Latin hypercube design(LHD), and the warpage values are evaluated by MoldFlowPlastic Insight software. An adaptive optimization based onartificial neural network model is proposed. The adaptiveprocess is performed by an EI function, which canadaptively select the additional sample points to improvethe surrogate model and find the optimum value 17. Thismethod has been viewed as effective global optimization21. The numerical results show that this method canreduce warpage efficiently.2 Artificial neural networkANN is a powerful tool for the simulation and prediction ofnonlinear problems. A neural network comprises manyhighly interconnected processing units called neurons. Eachneuron sums weighted inputs and then applies a linear ornonlinear function to the resulting sum to determine theoutput, and all of them are arranged in layers and combinedthrough excessive connectivity.The typical ANN is a back propagation network (BPN)2226 which has been widely used in many researchfields. A BPN has hierarchical feed-forward networkarchitecture, and the output of each layer is sent directlyto each neuron in the layer above. Although a BPN canhave many layers, all pattern recognition and classificationtasks can be accomplished with a three-layer BPN 27. pac ktct packP Warpage1mel tTmoldT 6 int 6Fig. 1 Configuration of the ANN model Add the modified design as a new sample in set of samplesStartGenerate a set of samples Run Moldflow to generate corresponding warpage values Perform ANN simulation Optimize EI function Is the convergence criterion satisfied?Obtain optimal design End YNFig. 2 Flowchart of combining ANN/EI optimizationFig. 3 Mid-plane model of a cellular phone coverTable 1 Ranges of the process parametersParameterTmold(C)Tmelt(C)tin(s)Ppack(%)tpack(s)tc(s)Lower limit502600.26015Upper limit903000.890515956Int J Adv Manuf Technol (2010) 48:955962A BPN is trained by repeatedly presenting a series ofinput/output pattern sets to the network. The neural networkgradually “l(fā)earns” the input/output relationship of interestby adjusting the weights between its neurons to minimizethe error between the actual and predicted output patterns ofthe training set. After training, a separate set of data whichis not in the training set is used to monitor the networksperformance. When the mean squared error (MSE) reachesa minimum, network training is considered complete andthe weights are fixed.In this paper, a three-layer ANN model with one hiddenlayer was used. The mold temperature (Tmold), melttemperature (Tmelt), injection time (tin), packing pressure(Ppack), packing time (tpack), and cooling time (tc) areregarded as input variables, and warpage is regarded asoutput variable. So the neuron numbers of the input layerand output layer of ANN are determined. The neuronnumber of the middle layer was determined by trials. Thetransfer function between the input layer and the hiddenlayer is “Logsig,” and the transfer function between thehidden layer and the output layer is “Purelin.” The trainfunction is trainlm, performance function is MSE, learningcycle is 50,000, learning rate is 0.05, and momentum factoris 0.9. The configuration of ANN used in this paper isshown in Fig. 1.3 EI methodANNs can be used as an arbitrary function approximationmechanism which “l(fā)earns” from observed data. ANN is hereused to build an approximate function relationship betweenthe warpage and the process parameters, replacing theexpensive analysis and reanalysis of simulation programs inthe optimizationprocess.Ingeneral,the approximate functionmay have many extremum points, making the optimizationalgorithms employing such functions converge to a localminimum. EI algorithm is here introduced to close to theglobal optimization solution.EI involves computing the possible improvement at agiven point. It is a heuristic algorithm for a sequential designstrategy for detecting the global minimum of a deterministicfunction 17, 21. It can balance local and global search.Beforesamplingatsomepointx, the value of Y(x) is uncertain.Y(x) at a candidate point x is normally distributed with b yx,and variance 2given using the ANN predictor. If the currentbest function value is Ymin, then an improvement I Ymin? yx by the ANN predictor can be achieved. Thelikelihood of this improvement is given by the normal density:1ffiffiffiffiffi2pps x exp ?Ymin? I ?b y x 22s2x #:1Then, the expected value of the improvement is found byintegrating over this density:EI ZI1I01ffiffiffiffiffi2pps x exp ?Ymin? I ?b y x 22s2x #()dI:2Fig. 5 Warpage of the cover after optimizationFig. 4 Warpage of the cover before optimizationTable 2 Optimization resultsParameterTmold(C)Tmelt(C)tin(s)Ppack(%)tpack(s)tc(s)Warpage(mm)Beforeoptimization75.57 288.31 0.57 63.96 1.22 5.700.1941Afteroptimization73.86 298.99 0.20 60.00 1.00 9.480.0833Fig. 6 Model of a scannerInt J Adv Manuf Technol (2010) 48:955962957Using integration by parts, Eq. 2 can be written as:EI sx u6u fu?3where and f are the normal cumulative distributionfunction and density function, respectively, andu Ymin?b y x s x :4The first term of Eq. 3 is the difference between thecurrent minimum response value Yminand the predictedvalueb yx at x, penalized by the probability of improvement.Hence, the first term is large when b yx is small. The secondterm is a product of predicted error (x) and normal densityfunction f(u). The normal density function value is largewhen the error (x) is large and b yx is close to Ymin. Thus,the expected improvement will tend to be large at a pointwith the predicted value smaller than Yminand/or with muchpredicted uncertainty.This infilling sampling method has some advantages: (1)It can intelligently add sample points to improve the ANN,so it allows “l(fā)earns” from observed data with a small size;(2) it can avoid searching the areas with relative largefunction values and reduce the computational cost; (3) itcan also avoid adding some points close to each other in thedesign space and keep the stability of ANN prediction.4 Warpage optimization based on improved ANNmethod4.1 Warpage optimization problemA warpage minimum design problem can be described asfollows:Findx1;x2;?;xmmaxmizeE I x1;x2;?;xm?Subjecttox?j? xj? xjj 1;2;?;m5where the process parameters x1;x2;?;xmare the designvariables and x?jand xjare the lower and upper limits of thejth design variable. The objective function E I x1;x2;? ? ?;xm?is given by Eqs. 3 and 4 inwhich Yminand yx are the currentminimum value and the predicted value of warpage, respectively.4.2 Convergence criterionThe convergence criterion is here to satisfy:E Ix?Ymin? $r6where r is a given convergence tolerance and Yminis theminimum function value in samples. The left-hand side is aratio between the maximum expected improvement and theminimum function value. Thus, r can be given withoutconsideration of the magnitudes, and r=0.1%.4.3 Implementation of optimization procedureImplementation of integrated ANN model and EI functionmethod is given in Fig. 2.5 Warpage optimization for a cellular phone coverand a scanner5.1 The optimization problemIn this section, the results of two warpage optimizationexamples are presented. These are intended to show theTable 3 Ranges of the process parametersParameterTmold(C)Tmelt(C)tin(s)Ppack(%)tpack(s)tc(s)Lower limit802600.26015Upper limit1203000.890515Table 4 Optimization resultsParameterTmold(C)Tmelt(C)tin(s)Ppack(%)tpack(s)tc(s)Warpage (mm)Before optimization92.95298.380.2585.492.8310.300.4805After optimization119.32300.000.2090.004.9215.000.2896Fig. 7 Warpage of the scanner before optimization958Int J Adv Manuf Technol (2010) 48:955962efficiency and accuracy of the integrated ANN model andEI function method.The first example is a cellular phone cover. It isdiscretized by 3,780 triangle elements, as shown in Fig. 3.Its length, width, height, and thickness are 130, 55, 11, and1 mm, respectively. The material is polycarbonate (PC)/acrylonitrile-butadiene-styrene.The mold temperature (Tmold), melt temperature (Tmelt),injection time (tin), packing pressure (Ppack), packing time(tpack), and cooling time (tc) are considered as designvariables. The objective function warpage(x) is quantifiedby the out-of-plane displacement, which is the sum of bothmaximum upward and downward deformations withreference to the default plane in Moldflow Plastics Insightsoftware. The constraints consist of the lower and upperbounds on the design variables given in Table 1. ANNmodel is here used to approximate warpage(x), i.e., b y x inEq. 2.The ranges of mold temperature and melt temperatureare based on the recommended values in Moldflow PlasticsInsight, and the ranges of injection time, packing pressure,packing time, and cooling time are determined by theexperience of the manufacturer.First, ten samples are selected by LHD, then the warpagevalue corresponding to every sample design is obtained byrunning Moldflow Plastics Insight software, and finally, anapproximate function relationship between warpage and theprocess parameters is constructed by means of ANN modelsimulation, replacing the expensive simulation analysis inthe optimization iterations.The optimization problem based on EI function is solvedhere using the sequential quadratic programming 28. Theexpected improvement surface may be highly multimodalFig. 8 Warpage of the scanner after optimization00.010.020.030.040.050.060.070.080.095060708090Mold temperature (oC)Warpage (mm)00.050.10.150.2260270280290300Melt temperature (oC)00.050.10.150.20.250.30.20.30.40.50.60.70.8Injection time(s)Warpage (mm)00.020.040.060.080.10.120.1460708090Packing pressure (MPa)Warpage (mm)Warpage (mm)00.020.040.060.080.10.120.141 23 45Packing time (s)Warpage (mm)0.0760.0780.080.0820.0840.0860.0880.090.0920.094579111315Cooling time (s)Warpage (mm)Fig. 9 Each factors individualeffect on the warpage of acellular phone coverInt J Adv Manuf Technol (2010) 48:955962959and thus difficult to optimize reliably. Firstly, 1,000 randompoints are selected, and EI function values computation areperformed by means of the constructed approximatemathematical function. The point with maximum EIfunction value is then selected to be one initial design. Inaddition, the point with minimum warpage value in samplepoints is selected to be another initial design, i.e., twooptimization processes are executed at each iteration. Incomparison with simulation analysis, these processesconsume very short time and can be ignored.Only 20 iterations were needed to obtain the optimizationsolution; the results are given in Table 3. Figures 4 and 5show the warpage values before and after optimization,respectively (Table 2).The second example is a scanner. The cover is discretizedby 8,046 triangle elements, as shown in Fig. 6. It is made ofPC. The mold temperature (Tmold), melt temperature (Tmelt),injection time (tin), packing pressure (Ppack), packing time(tpack), and cooling time (tc) are considered as designvariables. The objective function warpage(x) is quantifiedby the out-of-plane displacement, which is the sum of bothmaximum and minimum deformations with reference tothe default plane in Moldflow Plastics Insight software. Theconstraints consist of the lower and upper bounds on thedesign variables given in Table 3.The ranges of mold temperature and melt temperatureare based on the recommended values in Moldflow PlasticsInsight, and the ranges of injection time, packing pressure,packing time, and cooling time are determined by theexperience of the manufacturer.Initial ten samples are selected by LHD; the optimalsolution was obtained after 25 iterations. The results aregiven in Table 4. Figures 7 and 8 show the warpage beforeand after optimization, respectively.6 DiscussionsTables 2 and 4 show that several process parameters arelying in the boundaries of the limits. Figures 9 and 10 showeach factors effect on the warpage when all other factorsare kept at their optimal level, respectively.Figures 9 and 10 show that high melt temperature andshort injection time are desirable. The warpage valuedecreases nonlinearly as melt temperature changesfrom260C to 300C. This is because lower melt temper-ature has bad liquidity and can lead to early formation offrozen skin layer, which can generate higher shear stressand block flow. If there is no enough time to release theshear stress, the warpage will increase. However, the00.050.10.150.20.250.30.350.48090100110120Mold temperature (oC)Warpage (mm)00.10.20.30.40.50.6260270280290300Melt temperature (oC)Warpage (mm)00.050.10.150.20.250.30.350.40.450.50.20.30.40.50.60.70.8Injection time (s)Warpage (mm)00.10.20.30.40.50.60.70.80.9160708090Packing pressure (MPa)Warpage (mm)00.10.20.30.40.50.60.70.80.91 23 4 5Packing time(s)Warpage (mm)0.270.280.290.300.310.320.335 79111315Cooling time (s)Warpage (mm)Fig. 10 Each factors individualeffect on the warpage of ascanner960Int J Adv Manuf Technol (2010) 48:955962warpage value increases nonlinearly with the injection time.For the thin-wall injection molded parts, long injection timecan increase the ratio of the frozen skin layer to the moltencore layer. This can block badly the flow and lead to highershear stress and more molecular orientation in the material.The warpage value changes only a period of packing timeand almost is constant when packing time is longer thansome values. Figures 9 and 10 also show that the variationof warpage values is irregular when changing other processparameters such as packing pressure, cooling time, andmold temperature. The warpage value depends on thecombined efforts of all process parameters, and all theseprocess parameters should be provided by means ofoptimization.7 ConclusionsIn this study, an integrated ANN model and EI functionmethod is proposed to minimize the warpage of theinjection molding parts. This method aims at optimizingsome approximate functions trained by the ANN model.The optimization process can be started from anapproximate function trained by a set of a few samplepoints, then adding the best sample point into thetraining set by means of EI function. Every iteration ofthe optimization consists of training the approximatefunction and optimizing the EI function. The EI functioncan take the relatively unexpected space into consider-ation to improve the accuracy of the ANN model andquickly approach to the global optimization solution. Asthe applications, a cellular phone cover and a scanner,are investigated, only a small number of MoldflowPlastics Insight analysis are needed in optimizationsbecause the first iterations for both examples need a setof a few sample points (only ten sample points) andfollow-up of every iteration adds one sample point intothe set only. Numerical results show that the proposedoptimization method is efficient for reducing warpage ofinjection molded parts and can converge to the optimi-zation solution quickly. Although the design variables ofthese relatively examples are limited to the moldtemperature, melt temperature, injection time, packingpressure, packing time, and cooling time, the presentmethod is also applicable to more process parameters.However,
收藏