《新版高三數(shù)學(xué) 第42練 高考大題突破練數(shù)列》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高三數(shù)學(xué) 第42練 高考大題突破練數(shù)列(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1 1第42練 高考大題突破練數(shù)列訓(xùn)練目標(biāo)(1)數(shù)列知識(shí)的綜合應(yīng)用;(2)中檔大題的規(guī)范練訓(xùn)練題型(1)等差、等比數(shù)列的綜合;(2)數(shù)列與不等式的綜合;(3)數(shù)列與函數(shù)的綜合;(4)一般數(shù)列的通項(xiàng)與求和解題策略(1)將一般數(shù)列轉(zhuǎn)化為等差或等比數(shù)列;(2)用方程(組)思想解決等差、等比數(shù)列的綜合問題.1.設(shè)數(shù)列an的前n項(xiàng)和為Sn.已知2Sn3n3.(1)求an的通項(xiàng)公式;(2)若數(shù)列bn滿足anbnlog3an,求bn的前n項(xiàng)和Tn.2已知數(shù)列an是遞增的等比數(shù)列,且a1a49,a2a38.(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)Sn為數(shù)列an的前n項(xiàng)和,bn,求數(shù)列bn的前n項(xiàng)和Tn.3已知數(shù)
2、列an的各項(xiàng)均為正數(shù),Sn是數(shù)列an的前n項(xiàng)和,且4Sna2an3.(1)求數(shù)列an的通項(xiàng)公式;(2)已知bn2n,求Tna1b1a2b2anbn的值4.在數(shù)列an中,a1,其前n項(xiàng)和為Sn,且Snan1(nN*)(1)求an,Sn;(2)設(shè)bnlog2(2Sn1)2,數(shù)列cn滿足cnbn3bn41(n1)(n2)2bn,數(shù)列cn的前n項(xiàng)和為Tn,求使4Tn2n1成立的最小正整數(shù)n的值5已知函數(shù)f(x)滿足f(xy)f(x)f(y)且f(1).(1)當(dāng)nN*時(shí),求f(n)的表達(dá)式;(2)設(shè)annf(n),nN*,求證:a1a2a3an1時(shí),2Sn13n13,此時(shí)2an2Sn2Sn13n3n12
3、3n1,即an3n1,顯然a1不滿足an3n1,所以an(2)因?yàn)閍nbnlog3an,所以b1,當(dāng)n1時(shí),bn31nlog33n1(n1)31n,所以T1b1.當(dāng)n1時(shí),Tnb1b2b3bn131232333(n1)31n,所以3Tn1130231332(n1)32n,兩式相減,得2Tn(3031323332n)(n1)31n(n1)31n,所以Tn.經(jīng)檢驗(yàn),n1時(shí)也適合綜上可得Tn.2解(1)由題設(shè)知a1a4a2a38.又a1a49,可解得或(舍去)由a4a1q3得公比q2,故ana1qn12n1(nN*)(2)Sn2n1,又bn,所以Tnb1b2bn1.3解(1)當(dāng)n1時(shí),a1S1aa1
4、.解得a13.又4Sna2an3,當(dāng)n2時(shí),4Sn1a2an13.,得4anaa2(anan1),即aa2(anan1)0.(anan1)(anan12)0.anan10,anan12 (n2),數(shù)列an是以3為首項(xiàng),2為公差的等差數(shù)列an32(n1)2n1.(2)Tn321522(2n1)2n,2Tn322523(2n1)2n(2n1)2n1,得Tn3212(22232n)(2n1)2n16822n1(2n1)2n1(2n1)2n12.4解(1)由Snan1,得Sn1an(n2),兩式作差得anan1an,即2anan1(n2),2(n2),由a1S1a2,得a21,2,數(shù)列an是首項(xiàng)為,公
5、比為2的等比數(shù)列則an2n12n2,Snan12n1.(2)bnlog2(2Sn1)2log22n2n2,cnbn3bn41(n1)(n2)2bn,即cn(n1)(n2)1(n1)(n2)2n2,cn2n22n2,Tn()()()(21202n2)2n12n1.由4Tn2n1,得4(2n1)2n1.即2 014.使4Tn2n1成立的最小正整數(shù)n的值為2 015.5(1)解令xn,y1,得f(n1)f(n)f(1)f(n),f(n)是首項(xiàng)為,公比為的等比數(shù)列,f(n)()n.(2)證明設(shè)Tn為an的前n項(xiàng)和,annf(n)n()n,Tn2()23()3n()n,Tn()22()33()4(n1)()nn()n1,兩式相減得Tn()2()3()nn()n1,1()nn()n1,Tn2()n1n()n0;當(dāng)n9時(shí),bn0;當(dāng)n9時(shí),bn0.當(dāng)n8或n9時(shí),Sn取得最大值