《新版高三數(shù)學(xué) 第1練 集合的關(guān)系與運算練習(xí)》由會員分享,可在線閱讀,更多相關(guān)《新版高三數(shù)學(xué) 第1練 集合的關(guān)系與運算練習(xí)(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 1 1第1練 集合的關(guān)系與運算訓(xùn)練目標(biāo)(1)元素與集合的概念;(2)集合的基本關(guān)系;(3)集合的運算訓(xùn)練題型(1)判斷元素與集合、集合之間的關(guān)系;(2)求兩個集合的交集、并集、補(bǔ)集;(3)根據(jù)兩集合間的關(guān)系或運算求參數(shù)范圍解題策略(1)判斷集合的關(guān)系或進(jìn)行集合的運算,要先對集合進(jìn)行化簡;(2)利用Venn圖或數(shù)軸表示集合,從圖形中尋求關(guān)系;(3)可利用排除法解決集合中的選擇題.一、選擇題1(20xx山東乳山一中月考)設(shè)U1,2,3,4,5,A1,2,3,B2,3,4,則下列結(jié)論中正確的是()AABBAB2CAB1,2,3,4,5 DA(UB)12已知集合A1,2,3,4,5,B(x,y)|x
2、A,yA,xy,xyA,則集合B的子集個數(shù)是()A4 B15C8 D163.設(shè)函數(shù)f(x)lg(1x2),集合Ax|yf(x),By|yf(x),則圖中陰影部分表示的集合為()A1,0 B(1,0)C(,1)0,1) D(,1(0,1)4(20xx廈門模擬)設(shè)集合A(x,y)|1,B(x,y)|y3x,則AB的子集的個數(shù)是()A1 B2C3 D45已知集合Ax|yln(12x),Bx|x2x,則(AB)(AB)等于()A(,0) B.C(,0)D.6設(shè)集合Pm|1m0,QmR|mx24mx40,Bx|x22ax10,a0若AB中恰含有一個整數(shù),則實數(shù)a的取值范圍是()A(0,) B,)C,)
3、D(1,)8用C(A)表示非空集合A中的元素個數(shù),定義A*B若A1,2,Bx|(x2ax)(x2ax2)0,且A*B1,設(shè)實數(shù)a的所有可能取值組成的集合是S,則C(S)等于()A1 B3C5 D7二、填空題9(20xx成都月考)已知集合Mx|xx2,Ny|y,xM,則MN_.10若集合Ax|10,Bx|x2axb0,若ABR,ABx|30x|1x0x|x,Bx|x2xx|0x1,ABx|x1,ABx|0x,(AB)(AB)(,0),故選C.6CQmR|mx24mx40對任意實數(shù)x恒成立,對m分類:為m0時,40恒成立;當(dāng)m0時,需(4m)24m(4)0,解得1m0.綜合知10x|x1或x0,f
4、(3)6a80,根據(jù)對稱性可知,要使AB中恰含有一個整數(shù),則這個整數(shù)為2,所以有f(2)0且f(3)0,即所以即a0,即a2時,易知0,a均不是方程x2ax20的根,故C(B)4,不符合題意;當(dāng)0,即2a2時,方程x2ax20無實數(shù)解,當(dāng)a0時,B0,C(B)1,符合題意,當(dāng)2a0或0a2時,C(B)2,不符合題意所以S0,2,2故C(S)3.9x|xx2,解得0x1,Mx|0x1,0x1,14x4,2,Ny|y2,MNx|x110(,13,)解析化簡Bx|xa或xa1,又ABA,所以AB.由數(shù)軸知a1或a12,即a1或a3.所以a的取值范圍是(,13,)117解析由已知得Ax|x3,ABR,ABx|3x4,Bx|1x4,即方程x2axb0的兩根為x11,x24.a3,b4,ab7.12解析正確,任取x,yS,設(shè)xa1b1,ya2b2(a1,b1,a2,b2Z),則xy(a1a2)(b1b2),其中a1a2Z,b1b2Z.即xyS.同理xyS,xyS.正確,當(dāng)xy時,0S.錯誤,當(dāng)S0時,是封閉集,但不是無限集錯誤,設(shè)S0T0,1,顯然T不是封閉集因此正確命題為.