安徽省長(zhǎng)豐縣高中數(shù)學(xué) 第二章 圓錐曲線與方程小結(jié)與復(fù)習(xí)教案 新人教A版選修11
《安徽省長(zhǎng)豐縣高中數(shù)學(xué) 第二章 圓錐曲線與方程小結(jié)與復(fù)習(xí)教案 新人教A版選修11》由會(huì)員分享,可在線閱讀,更多相關(guān)《安徽省長(zhǎng)豐縣高中數(shù)學(xué) 第二章 圓錐曲線與方程小結(jié)與復(fù)習(xí)教案 新人教A版選修11(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 圓錐曲線與方程小結(jié)與復(fù)習(xí) 項(xiàng)目 內(nèi)容 課題 圓錐曲線與方程小結(jié)與復(fù)習(xí) (共 3 課時(shí)) 修改與創(chuàng)新 教學(xué) 目標(biāo) 知識(shí)與能力:通過(guò)小結(jié)與復(fù)習(xí),使同學(xué)們完整準(zhǔn)確地理解和掌握三種曲線的特點(diǎn)以及它們之間的區(qū)別與聯(lián)系 過(guò)程與方法:通過(guò)本節(jié)教學(xué)使學(xué)生較全面地掌握本章所教的各種方法與技巧,尤其是解析幾何的基本方法――坐標(biāo)法;并在教學(xué)中進(jìn)一步培養(yǎng)他們形與數(shù)結(jié)合的思想、化歸的數(shù)學(xué)思想以及“應(yīng)用數(shù)學(xué)”的意識(shí) 情感、態(tài)度與價(jià)值觀:結(jié)合教學(xué)內(nèi)容對(duì)學(xué)生進(jìn)行運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的觀點(diǎn)的教育 教學(xué)重、 難點(diǎn) 重點(diǎn):三種曲線的標(biāo)準(zhǔn)方程和圖形、性質(zhì) 難點(diǎn):做好思路分析,引導(dǎo)學(xué)生找到解
2、題的落足點(diǎn) 教學(xué) 準(zhǔn)備 多媒體課件 教學(xué)過(guò)程 (一)基礎(chǔ)知識(shí)回顧: 1.橢圓定義:在平面內(nèi),到兩定點(diǎn)距離之和等于定長(zhǎng)(定長(zhǎng)大于兩定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡 2.橢圓的標(biāo)準(zhǔn)方程:, () 3.橢圓的性質(zhì):由橢圓方程() (1)范圍: ,,橢圓落在組成的矩形中. (2)對(duì)稱(chēng)性:圖象關(guān)于軸對(duì)稱(chēng).圖象關(guān)于軸對(duì)稱(chēng).圖象關(guān)于原點(diǎn)對(duì)稱(chēng)原點(diǎn)叫橢圓的對(duì)稱(chēng)中心,簡(jiǎn)稱(chēng)中心.軸、軸叫橢圓的對(duì)稱(chēng)軸.從橢圓的方程中直接可以看出它的范圍,對(duì)稱(chēng)的截距 (3)頂點(diǎn):橢圓和對(duì)稱(chēng)軸的交點(diǎn)叫做橢圓的頂點(diǎn) 橢圓共有四個(gè)頂點(diǎn): ,兩焦點(diǎn)共有六個(gè)特殊點(diǎn)叫橢圓的長(zhǎng)軸,叫橢圓的短軸.長(zhǎng)分別為 分別為
3、橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)橢圓的頂點(diǎn)即為橢圓與對(duì)稱(chēng)軸的交點(diǎn) (4)離心率: 橢圓焦距與長(zhǎng)軸長(zhǎng)之比 橢圓形狀與的關(guān)系:,橢圓變圓,直至成為極限位置圓,此時(shí)也可認(rèn)為圓為橢圓在時(shí)的特例橢圓變扁,直至成為極限位置線段,此時(shí)也可認(rèn)為圓為橢圓在時(shí)的特例 4.雙曲線的定義:平面內(nèi)到兩定點(diǎn)的距離的差的絕對(duì)值為常數(shù)(小于)的動(dòng)點(diǎn)的軌跡叫雙曲線 即 這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)間的距離叫做焦距 在同樣的差下,兩定點(diǎn)間距離較長(zhǎng),則所畫(huà)出的雙曲線的開(kāi)口較開(kāi)闊(兩條平行線)兩定點(diǎn)間距離較短(大于定差),則所畫(huà)出的雙曲線的開(kāi)口較狹窄(兩條射線)雙曲線的形狀與兩定點(diǎn)間距離、定差有關(guān) 5.雙曲線的標(biāo)準(zhǔn)方
4、程及特點(diǎn): (1)雙曲線的標(biāo)準(zhǔn)方程有焦點(diǎn)在x軸上和焦點(diǎn)y軸上兩種: 焦點(diǎn)在軸上時(shí)雙曲線的標(biāo)準(zhǔn)方程為:(,); 焦點(diǎn)在軸上時(shí)雙曲線的標(biāo)準(zhǔn)方程為:(,) (2)有關(guān)系式成立,且 其中a與b的大小關(guān)系:可以為 6焦點(diǎn)的位置:從橢圓的標(biāo)準(zhǔn)方程不難看出橢圓的焦點(diǎn)位置可由方程中含字母、項(xiàng)的分母的大小來(lái)確定,分母大的項(xiàng)對(duì)應(yīng)的字母所在的軸就是焦點(diǎn)所在的軸而雙曲線是根據(jù)項(xiàng)的正負(fù)來(lái)判斷焦點(diǎn)所在的位置,即項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在軸上;項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在軸上 7.雙曲線的幾何性質(zhì): (1)范圍、對(duì)稱(chēng)性 由標(biāo)準(zhǔn)方程,從橫的方向來(lái)看,直線x=-a,x=a之間沒(méi)有圖象,從縱的
5、方向來(lái)看,隨著x的增大,y的絕對(duì)值也無(wú)限增大,所以曲線在縱方向上可無(wú)限伸展,不像橢圓那樣是封閉曲線雙曲線不封閉,但仍稱(chēng)其對(duì)稱(chēng)中心為雙曲線的中心 (2)頂點(diǎn) 頂點(diǎn):,特殊點(diǎn): 實(shí)軸:長(zhǎng)為2a, a叫做半實(shí)軸長(zhǎng)虛軸:長(zhǎng)為2b,b叫做虛半軸長(zhǎng) 雙曲線只有兩個(gè)頂點(diǎn),而橢圓則有四個(gè)頂點(diǎn),這是兩者的又一差異 (3)漸近線 過(guò)雙曲線的漸近線() (4)離心率 雙曲線的焦距與實(shí)軸長(zhǎng)的比,叫做雙曲線的離心率范圍: 雙曲線形狀與e的關(guān)系:,e越大,即漸近線的斜率的絕對(duì)值就大,這是雙曲線的形狀就從扁狹逐漸變得開(kāi)闊由此可知,雙曲線的離心率越大,它的開(kāi)口就越闊 8.等軸雙曲線 定義:實(shí)
6、軸和虛軸等長(zhǎng)的雙曲線叫做等軸雙曲線,這樣的雙曲線叫做等軸雙曲線 等軸雙曲線的性質(zhì):(1)漸近線方程為:;(2)漸近線互相垂直;(3)離心率 9.共漸近線的雙曲線系 如果已知一雙曲線的漸近線方程為,那么此雙曲線方程就一定是:或?qū)懗? 10 拋物線定義: 平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線的距離相等的點(diǎn)的軌跡叫做拋物線定點(diǎn)F叫做拋物線的焦點(diǎn),定直線叫做拋物線的準(zhǔn)線 11.拋物線的準(zhǔn)線方程: (1), 焦點(diǎn):,準(zhǔn)線: (2), 焦點(diǎn):,準(zhǔn)線: (3), 焦點(diǎn):,準(zhǔn)線: (4) , 焦點(diǎn):,準(zhǔn)線: 相同點(diǎn):(1)拋物線都過(guò)原點(diǎn);(2)對(duì)稱(chēng)軸為坐標(biāo)軸;(3)準(zhǔn)線都與對(duì)稱(chēng)軸垂直,垂
7、足與焦點(diǎn)在對(duì)稱(chēng)軸上關(guān)于原點(diǎn)對(duì)稱(chēng) 它們到原點(diǎn)的距離都等于一次項(xiàng)系數(shù)絕對(duì)值的,即 不同點(diǎn):(1)圖形關(guān)于X軸對(duì)稱(chēng)時(shí),X為一次項(xiàng),Y為二次項(xiàng),方程右端為、左端為;圖形關(guān)于Y軸對(duì)稱(chēng)時(shí),X為二次項(xiàng),Y為一次項(xiàng),方程右端為,左端為 (2)開(kāi)口方向在X軸(或Y軸)正向時(shí),焦點(diǎn)在X軸(或Y軸)的正半軸上,方程右端取正號(hào);開(kāi)口在X軸(或Y軸)負(fù)向時(shí),焦點(diǎn)在X軸(或Y軸)負(fù)半軸時(shí),方程右端取負(fù)號(hào) 12.拋物線的幾何性質(zhì) (1)范圍 因?yàn)閜>0,由方程可知,這條拋物線上的點(diǎn)M的坐標(biāo)(x,y)滿足不等式x≥0,所以這條拋物線在y軸的右側(cè);當(dāng)x的值增大時(shí),|y|也增大,這說(shuō)明拋物線向右上方和右下方無(wú)限延
8、伸. (2)對(duì)稱(chēng)性 以-y代y,方程不變,所以這條拋物線關(guān)于x軸對(duì)稱(chēng),我們把拋物線的對(duì)稱(chēng)軸叫做拋物線的軸. (3)頂點(diǎn) 拋物線和它的軸的交點(diǎn)叫做拋物線的頂點(diǎn).在方程中,當(dāng)y=0時(shí),x=0,因此拋物線的頂點(diǎn)就是坐標(biāo)原點(diǎn). (4)離心率 拋物線上的點(diǎn)M與焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,e=1. 13拋物線的焦半徑公式: 拋物線, 拋物線, 拋物線, 拋物線, 14.直線與拋物線: (1)位置關(guān)系: 相交(兩個(gè)公共點(diǎn)或一個(gè)公共點(diǎn));相離(無(wú)公共點(diǎn));相切(一個(gè)公共點(diǎn)) 將代入,消去y,得到 關(guān)于x的二次方程
9、 (*) 若,相交;,相切;,相離 綜上,得: 聯(lián)立,得關(guān)于x的方程 當(dāng)(二次項(xiàng)系數(shù)為零),唯一一個(gè)公共點(diǎn)(交點(diǎn)) 當(dāng),則 若,兩個(gè)公共點(diǎn)(交點(diǎn)) ,一個(gè)公共點(diǎn)(切點(diǎn)) ,無(wú)公共點(diǎn) (相離) (2)相交弦長(zhǎng): 弦長(zhǎng)公式:, (3)焦點(diǎn)弦公式: 拋物線, 拋物線, 拋物線, 拋物線, (4)通徑: 定義:過(guò)焦點(diǎn)且垂直于對(duì)稱(chēng)軸的相交弦 通徑: (5)若已知過(guò)焦點(diǎn)的直線傾斜角 則 (6)常用結(jié)論: 和 和 (二)、講解范例: 例1 根據(jù)下列條件,寫(xiě)出橢圓方程 ⑴ 中心在原點(diǎn)、以對(duì)稱(chēng)軸為坐標(biāo)軸、離心率為1
10、/2、長(zhǎng)軸長(zhǎng)為8; ⑵ 和橢圓9x2+4y2=36有相同的焦點(diǎn),且經(jīng)過(guò)點(diǎn)(2,-3); ⑶ 中心在原點(diǎn),焦點(diǎn)在x軸上,從一個(gè)焦點(diǎn)看短軸兩端的視角為直角,焦點(diǎn)到長(zhǎng)軸上較近頂點(diǎn)的距離是 分析: 求橢圓的標(biāo)準(zhǔn)方程,首先要根據(jù)焦點(diǎn)位置確定方程形式,其次是根據(jù)a2=b2+c2及已知條件確定a2、b2的值進(jìn)而寫(xiě)出標(biāo)準(zhǔn)方程 解 ⑴ 焦點(diǎn)位置可在x軸上,也可在y軸上, 因此有兩解: ⑵ 焦點(diǎn)位置確定,且為(0,),設(shè)原方程為,(a>b>0),由已知條件有 ,故方程為 ⑶ 設(shè)橢圓方程為,(a>b>0) 由題設(shè)條件有 及a2=b2+c2,解得b=, 故所求橢圓的方程是 例2 從橢圓,
11、(a>b>0)上一點(diǎn)M向x軸所作垂線恰好通過(guò)橢圓的左焦點(diǎn)F1,A、B分別是橢圓長(zhǎng)、短軸的端點(diǎn),AB∥OM設(shè)Q是橢圓上任意一點(diǎn),當(dāng)QF2⊥AB時(shí),延長(zhǎng)QF2與橢圓交于另一點(diǎn)P,若⊿F2PQ的面積為20,求此時(shí)橢圓的方程 解 可用待定系數(shù)法求解 ∵b=c,a=c,可設(shè)橢圓方程為 ∵PQ⊥AB,∴kPQ=-,則PQ的方程為y=(x-c), 代入橢圓方程整理得5x2-8cx+2c2=0, 根據(jù)弦長(zhǎng)公式,得, 又點(diǎn)F1到PQ的距離d=c ∴ ,由 故所求橢圓方程為 例3 已知橢圓:,過(guò)左焦點(diǎn)F作傾斜角為的直線交橢圓于A、B兩點(diǎn),求弦AB的長(zhǎng) 解:a=3,b=1,c=2; 則F(-
12、2,0) 由題意知:與聯(lián)立消去y得: 設(shè)A(、B(,則是上面方程的二實(shí)根,由違達(dá)定理, ,又因?yàn)锳、B、F都是直線上的點(diǎn), 所以|AB|= 點(diǎn)評(píng):也可讓學(xué)生利用“焦半徑”公式計(jì)算 例4 中心在原點(diǎn),一個(gè)焦點(diǎn)為F1(0,)的橢圓截直線所得弦的中點(diǎn)橫坐標(biāo)為,求橢圓的方程 分析:根據(jù)題意,可設(shè)橢圓的標(biāo)準(zhǔn)方程,與直線方程聯(lián)立解方程組,利用韋達(dá)定理及中點(diǎn)坐標(biāo)公式,求出中點(diǎn)的橫坐標(biāo),再由F1(0,)知,c=,,最后解關(guān)于a、b的方程組即可 解:設(shè)橢圓的標(biāo)準(zhǔn)方程為, 由F1(0,)得 把直線方程代入橢圓方程整理得: 設(shè)弦的兩個(gè)端點(diǎn)為,則由根與系數(shù)的關(guān)系得: , 又AB的
13、中點(diǎn)橫坐標(biāo)為, ,與方程聯(lián)立可解出 故所求橢圓的方程為: 例5 直線與雙曲線相交于A、B兩點(diǎn),當(dāng)為何值時(shí),A、B在雙曲線的同一支上?當(dāng)為何值時(shí),A、B分別在雙曲線的兩支上? 解: 把代入 整理得:……(1) 當(dāng)時(shí), 由>0得且時(shí),方程組有兩解,直線與雙曲線有兩個(gè)交點(diǎn) 若A、B在雙曲線的同一支,須>0 ,所以或 故當(dāng)或時(shí),A、B兩點(diǎn)在同一支上;當(dāng)時(shí),A、B兩點(diǎn)在雙曲線的兩支上 例6 已知雙曲線的中心在原點(diǎn),過(guò)右焦點(diǎn)F(2,0)作斜率為的直線,交雙曲線于M、N 兩點(diǎn),且=4,求雙曲線方程 解:設(shè)所求雙曲線方程為,由右焦點(diǎn)為(2,0)知C=2,b2=4-a2 則雙曲線方程為,
14、設(shè)直線MN的方程為:,代入雙曲線方程整理得:(20-8a2)x2+12a2x+5a4-32a2=0 設(shè)M(x1,y1),N(x2,y2),則, 解得:, 故所求雙曲線方程為: 點(diǎn)評(píng):利用待定系數(shù)法求曲線方程,運(yùn)用一元二次方程得根與系數(shù)關(guān)系將兩根之和與積整體代入,體現(xiàn)了數(shù)學(xué)的整體思想,也簡(jiǎn)化了計(jì)算,要求學(xué)生熟練掌握 例7 已知雙曲線,過(guò)點(diǎn) A(2,1)的直線與已知雙曲線交于P、Q兩點(diǎn)(1)求PQ中點(diǎn)的軌跡方程;(2)過(guò)B(1,1)能否作直線,使與所給雙曲線交于兩點(diǎn)M、N,且B為MN的中點(diǎn),若存在,求出的方程,不存在說(shuō)明理由 解:(1)設(shè)P(x1,y1)、Q(x2,
15、y2),其中點(diǎn)為(x,y),PQ的斜率為k, 若PQ的斜率不存在顯然(2,0)點(diǎn)是曲線上的點(diǎn) 若PQ的斜率存在,由題設(shè)知: …(1) …(2) (2)-(1)得: ,即…(3) 又代入(3)整理得: (2)顯然過(guò)B點(diǎn)垂直X抽的直線不符合題意只考慮有斜率的情況設(shè)的方程為y-1=k(x-1) 代入雙曲線方程,整理得: …※ 設(shè)M(x1,y1)、N(x2,y2)則有解得:=2 又直線與雙曲線必須有兩不同交點(diǎn), 所以※式的 把K=2代入得<0, 故不存在滿足題意的直線 例8 已知拋物線方程為,直線過(guò)拋物線的焦點(diǎn)F且被拋物線截得的弦長(zhǎng)為3,求p的值. 解:設(shè)與拋
16、物線交于 由距離公式 |AB|== 則有 由 從而由于p>0,解得 例9 如圖,線段AB過(guò)x軸正半軸上一點(diǎn)M(m,0)(m>0),端點(diǎn)A、B到x軸距離之積為,以x軸為對(duì)稱(chēng)軸,過(guò)A,O,B三點(diǎn)作拋物線 (1)求拋物線方程; (2)若的取值范圍 解:(1)當(dāng)AB不垂直x軸時(shí),設(shè)AB方程為 由| , 故所求拋物線方程為 (2)設(shè) ①, 平方后化簡(jiǎn)得 又由①知 的取值范圍為 軸時(shí), 符合條件, 故符合條件的m取值范圍為 (三)、課堂練習(xí): 1.直線與曲線,相交于A、B兩點(diǎn),求直線的傾斜角的范圍答案: 2.直線
17、與雙曲線的左支僅有一個(gè)公共點(diǎn),求K的取值范圍 答案:或 3.已知雙曲線與點(diǎn)P(1,2),過(guò)P點(diǎn)作直線L與雙曲線交于A、B兩點(diǎn),若P為AB的中點(diǎn)(1)求直線AB的方程(2)若Q為(-1,-1),證明不存在以Q為中點(diǎn)的弦 答案 AB:x-y+1=0 4.雙曲線,一條長(zhǎng)為8的弦AB的兩端在曲線上運(yùn)動(dòng),其中點(diǎn)為M,求距Y軸最近的點(diǎn)M的坐標(biāo)答案: 5.頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線,截直線所得的弦長(zhǎng)為,求拋物線的方程答案:或 6.過(guò)拋物線焦點(diǎn)的直線與拋物線交于、兩點(diǎn),若、在拋物線準(zhǔn)線上的射影分別為、,則等于 ( B ) A. B C D 7若拋
18、物線被過(guò)焦點(diǎn),且傾斜角為的直線所截,求截得的線段的中點(diǎn)坐標(biāo) 答案: 8過(guò)點(diǎn)的直線與拋物線交于、兩點(diǎn),求直線的斜率K的取值范圍答案: 9.過(guò)點(diǎn)作傾斜角為的直線交拋物線于點(diǎn)、,若,求實(shí)數(shù)的值答案: (四)課時(shí)小結(jié) : 1、直線與曲線的位置關(guān)系有相離、相切、相交三種 2、判斷其位置關(guān)系看直線是否過(guò)定點(diǎn),在根據(jù)定點(diǎn)的位置和雙曲線的漸近線的斜率與直線的斜率的大小關(guān)系確定其位置關(guān)系 3、可通過(guò)解直線方程與曲線方程解的個(gè)數(shù)來(lái)確定他們的位置關(guān)系但有一解不一定是相切,要根據(jù)斜率作進(jìn)一不的判定 板書(shū)設(shè)計(jì) 圓錐曲線小結(jié)與復(fù)習(xí) 1.橢圓的標(biāo)準(zhǔn)方程:, () 例1
19、 2.橢圓的幾何性質(zhì): 3.雙曲線的標(biāo)準(zhǔn)方程:;(,) 4.雙曲線的幾何性質(zhì): 5.拋物線的標(biāo)準(zhǔn)方程: (1), 焦點(diǎn):,準(zhǔn)線: 例2 (2), 焦點(diǎn):,準(zhǔn)線: (3), 焦點(diǎn):,準(zhǔn)線: (4) , 焦點(diǎn):,準(zhǔn)線: 6.拋物線的幾何性質(zhì): 教學(xué)反思 圓錐曲線與直線、圓比較,增加了不少難度,學(xué)生在分析解題思路和運(yùn)算中都有不少困難,需要在鞏固知識(shí)的基礎(chǔ)上,增加訓(xùn)練。同時(shí)引導(dǎo)學(xué)生要善于總結(jié)。 我國(guó)經(jīng)濟(jì)發(fā)展進(jìn)入新常態(tài),需要轉(zhuǎn)變經(jīng)濟(jì)發(fā)展方式,改變粗放式增長(zhǎng)模式,不斷優(yōu)化經(jīng)濟(jì)結(jié)構(gòu),實(shí)現(xiàn)經(jīng)濟(jì)健康可持續(xù)發(fā)展進(jìn)區(qū)域協(xié)調(diào)發(fā)展,推進(jìn)新型城鎮(zhèn)化,推動(dòng)城鄉(xiāng)發(fā)展一體化因:我國(guó)經(jīng)濟(jì)發(fā)展還面臨區(qū)域發(fā)展不平衡、城鎮(zhèn)化水平不高、城鄉(xiāng)發(fā)展不平衡不協(xié)調(diào)等現(xiàn)實(shí)挑戰(zhàn)。
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類(lèi)和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類(lèi)別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂(lè)度寒假充實(shí)促成長(zhǎng)
- 紅色插畫(huà)風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見(jiàn)輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門(mén)及人員安全生產(chǎn)責(zé)任制