《含參量瑕積分一致收斂性的判定》由會員分享,可在線閱讀,更多相關(guān)《含參量瑕積分一致收斂性的判定(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2008年9月Sep. 2008第30卷第5期Vol.30Nd,5*山師危學Bt學按Journal ofTcmgshan Teachers College含參量瑕積分致收斂性的判定宋澤成(扈山師范學院 數(shù)學與倍息科學系.河北 唐山063000)摘要:依據(jù)兩類含參量反常積分可以互化的關(guān)系.從含參畳無窮限積分的一致收斂的判定定理出發(fā).給出了 含參瑕積分一毀收斂性的判定定理及其證明.關(guān)鍵詞$含參量瑕積分;含參量無窮限積分;一致收斂中圖分類號:0172文Itt標識碼:A文章編號:1009-9115(2008)05-0012-04Judgment Theorem of Consistent Astrin
2、gency of Flaw IntegralContaining ParametersSONG Ze-cheng(Dq)artmcnt of Mathematics and Information Science, Tangshan Teachers College, Hebei Tangshan 063000, China)Abstract: On the base of the relation between the two abnormality integral containing parameters, the judgment theorem of consistent ast
3、ringency of flaw integral containing parameters was deduced from the judgment theorem of consistent astringency infinite integral containing parameters. Some typical examples were given to illuminate the application of the obtained judgment theorem Key words: flaw integral containing parameters; inf
4、inite integral containing parameters; consistent astringency2008年9月Sep. 20082008年9月Sep. 2008現(xiàn)行的數(shù)學分析教材及文獻中僅給出了含參St無窮限 積分一致收斂性的判定定理忽視了含參呈瑕積分的一致收 斂性的判定,英實兩者Z間是同中有“異”的.它們在敘述 和證明中都存在著不同之處因此弄清它們的“異”對學習 含參鳳瑕枳分是很有必要的.一、預備知識定義I在區(qū)域6卜c, N)上冇定義若對x的某些值.y = d為函& /(x, y)的瑕點(以F 的含參議瑕稅分未加說期都同此).則稱f f(x, ydy(1)為含參fit
5、 X的瑕積分定義2對任給正數(shù)總存在某正數(shù)3d-c.便得 當0 耳Q.使得當0時.對一切xea9 b 都仃|O(x,翊 V證明:必要性由在a, 6上一致收斂.故對任 給的r0(S0使得OvhvqvS 時.有2008年9月Sep. 20082008年9月Sep. 2008收稿H 期:2008-1-24作者簡介:宋澤成(1964-).男,河北瞞海人,唐山師范學院數(shù)學與信息科學系副救授. 12第30卷第2期唐山師范學院學報2008年3月宋澤成:含參量収積分一致收斂性的判定14第30卷第2期唐山師范學院學報2008年3月14第30卷第2期唐山師范學院學報2008年3月忙/X,刃對鏟y)dy0(5vd-c
6、)便得當0 5時.對一切xea9 b9都有令y-o則有由定義2尬 含簽竝瑕積分(y(a9 6一致收斂.注根據(jù)含參址琨積分f /(X, y)dy一致收斂的柯西收斂準則,我們可以給出其非一致收斂的充 姿條件,30 0.對5o(5vd-c) 3)v帀%? 3x0 e a, b有定理2(爾斯待拉斯M判別法)設(shè)右函數(shù)g(j).使|/(x,y)|Wg(y),aWxWb,cWy0.存在50(5d-c)對 于任怠的久rjf RO rj9 tj 6 有化;g(yW v 又宙(3)可御I j: /(x,翊 wf:g(y)dy0 .必存在50(5v-c)當 Qrjf rj 6時對切xea9 b總有| 打/(X,刃列
7、 +00)且&遞堆 則-0(n-ao)且遞減.由數(shù)列極限定義.對上述 6Q9存在正整數(shù)N.只要mnN時,就有 i(x)+(x)l-f/(X,刃妙+ +/(X, y)dy=廣/(*,7剛根據(jù)函數(shù)項級數(shù)柯西一致收斂準則函數(shù)項級數(shù)(4)在 a, 6上一致收斂.充分性用反證法備設(shè)在a, b上非一致收魚 則存在臬一正數(shù)Q 0,使甜對于 存在相用的0 rf7&和有:/(x; A匈二如現(xiàn)取=minl,J-c.則存在0仍5 使得般地取氏=min丄.-久(mW2)則有 n(斗,刃如令令則兒是遞堆數(shù)列且有 limAnd.夸察級效用十 800mi/ii n由(6)式知存在正數(shù)。0對任戀正整數(shù)N.只要 n N StW
8、M 個 x”wa,M使廣 fxyy)dy *這與函數(shù)項級數(shù)(4)在上上一致收斂的條件矛盾.故 在肚”上一致收斂.定理4 (軟利克雷判別法) 若含參量瑕稅分滿足:i)對一切c(fd.含參量正常枳分f fx.y)dy 對ttx在a,b上一致有界.即存在正數(shù)M.對任何 c d 有 | f(x9y)dy |A/ (ii)對毎一個xea9b.函數(shù)g(x)關(guān)于y單調(diào)且 當yd時.對參ttx. g(x,y) 致收斂于0.則含參H 瑕積f/(x)g(x,刃妙在a,b上一致收敘.證明:由(i)可知:對一切c d-rj 0有|f7(x,y)pA/()由條件(ii)可知:對任意的0,存在與X無關(guān)的50(5d-c),
9、使得當0 v礦 v5且d時.對于任意xea,b.有亦惦令從而當0 耳50對參址有|g(x,y)MM(10)因為含翁屋瑕稅分J/ f(x9y)dy在a,”上一致收 斂.所以由定理1知:時任給的0存在與X無關(guān)的 50(5vd-c)使得 0時.有篇/(和)呦芍(故對任意x wab,由枳分中值定理和(10).(11)可得: | 篇/3)g(x,訓0x0-鬭/(羽翊+跑d 初|7(1 刈= 2e M M其中在d_rj和d-礦之間故由定理I知含參就瑕積分f(x.y)g(x9y)dy在 %上一致收斂.定理6設(shè)f(x9y)在匕”卜卜皿)上連續(xù).對任何 *a,b), f/(x,刃妙收斂,R 7。刃妙發(fā)散,則 f
10、 f(x9y)dy在證小)上不一致收斂.證明:用反證法若ff(x9y)dy在肚力上一致收斂. 由柯西收敘準則:對任給的。0,存在50(5vdY)當 0”帀5時.對一切xwa,b)有忙:/Xx,刃l(wèi))上一致收斂.證明:由條件可知|ln(xy)| = |lnx + lnj| |lnx| + |ln| W nb-ny故對于任給的0取久=占4當0巾 1)上一致收斂.例JS 4判別含妙員瑕積分(Asin丄和在開區(qū)何由于收對于任給的C9取當0T時, 即有J嚴乎工彳 (0, 2)是否一致收斂解:因為-Lsin丄妙發(fā)散,所以由定理6知 (厶血丄妙在開區(qū)何(0, 2)非一致收斂.:例題5證明含參H琨枳分致收斂在
11、(0. d上一因此.對于0vx 1它是一致收斂的于是枳分對于Vx (0,1)上一致收斂.JF司例JH2證明含參fit瑕積分才dy_時心 IX,-2)2 VxeO,| _致收效.證明:易見嚴h嚴2是瑕點.將積分分成在(0,1)及(I.2)上的兩個積分當0嚴1且X 0,0.5時.有證明:由于于Cfy收斂(當然,對于參ix,它在0, d上收斂).函數(shù)對每個xw(o,d單調(diào). 且對任何 0 M x S d.O My S1 都 W|g(x,y)| = ”門 S1 故由定理5知ev-dy在0, d)上一致收斂.(12)(1-莎 U-2)亍當|vy2且xg 0,0.5時有42心-lXD?(13)參考文獻11華東師大數(shù)學系數(shù)學分析(下冊X第三版)M北京高 等敎育M版社2001華東師大數(shù)學系數(shù)學分析(上冊X第三版)【北京:離 等教育出版社.2001.3劉玉璉,傅沛仁數(shù)學分析(下冊X第三版)M北京:高等 教育出版社992(4陳紀修於崇華數(shù)學分析(下冊X第二版)(M.北京:高尊教 育出版社J988.(責任編輯.校對:陳景林)