慣性式紅棗分級的設(shè)計
慣性式紅棗分級的設(shè)計,慣性式紅棗分級的設(shè)計,慣性,紅棗,分級,設(shè)計
慣性式紅棗分級裝置的設(shè)計孫國良、李宜峰(塔里木大學(xué)機械電氣化工程學(xué)院, 阿拉爾 843300)摘要:針對南疆地區(qū)紅棗種植面積逐年擴大,已形成規(guī)?;N植的趨勢,紅棗產(chǎn)量也比較高。但在機械分選紅棗的過程中,混級率依然比較嚴重,所以設(shè)計了一種慣性式紅棗分級裝置。該機采用雙曲柄機構(gòu)作為慣性輸出裝置,可將形狀不同的紅棗按指定要求進行分級分選。機械結(jié)構(gòu)主要由喂料裝置、分級裝置、卸料裝置幾部分組成,整體機構(gòu)緊湊,操作簡單易行,維護方便,而且在經(jīng)過適當調(diào)整后可進行其他干果的分級分選,可達到一機多用的效果。關(guān)鍵詞:農(nóng)業(yè)機械; 紅棗分級; 慣性式;設(shè)計中圖分類號: 文獻標識碼: 文章編號:0引言隨著農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整,區(qū)域型農(nóng)產(chǎn)品已成為帶動當?shù)剞r(nóng)民經(jīng)濟收入的主要產(chǎn)業(yè)之一。紅棗在我國已有悠久的種植歷史,但由于區(qū)域性自然資源的限制,導(dǎo)致國內(nèi)紅棗品質(zhì)不一。經(jīng)過近些年的種植經(jīng)驗,發(fā)現(xiàn)地區(qū)非常適合紅棗的種植,尤其是南疆地區(qū)有著優(yōu)質(zhì)的光熱資源,很適合紅棗的生長。種植出的紅棗果大肉甜,品質(zhì)極佳,很受消費者的歡迎。紅棗傳統(tǒng)的食用方法是以鮮棗和干棗為主,但近些年來,隨著國民經(jīng)濟水品的提高也逐漸改變了人們的消費理念和消費水平,紅棗的食用方法根據(jù)人們各自的需要也各不相同。這樣就帶動了紅棗精加工企業(yè)的發(fā)展,而在紅棗加工過程中,紅棗的分級是一個重要的環(huán)節(jié),無論是鮮棗收購、貯藏保鮮、還是紅棗制干、定量包裝等,作為紅棗商品化加工的第一步就是對紅棗進行分級分選。機械式紅棗分級設(shè)備已逐漸普及,使得紅棗加工生產(chǎn)效率大大的提高。但現(xiàn)有的紅棗分級機械,依然存在一些問題,在紅棗分選過程中混級率較大,有時還會出現(xiàn)傷果等現(xiàn)象。本設(shè)計著重針對原有紅棗分級機械中存在的這些問題,加以改進,設(shè)計了慣性式紅棗分級裝置。1設(shè)計原理及機構(gòu)1.1設(shè)計原理 慣性式紅棗分級機是將不同外形尺寸大小的紅棗按照慣性原理進行分級篩選的機械,該機械可以將紅棗按指定要求分為四個等級,紅棗在平面篩上運動時,直徑比篩網(wǎng)間隙小的將通過篩網(wǎng)進入下一層平面篩,而直徑比篩網(wǎng)間隙大的紅棗將停留在篩網(wǎng)上,隨篩網(wǎng)運動,由于機構(gòu)的急回特性,當平面篩運功到一端瞬時停止原有運動,反方向急回運動,但紅棗在慣性力的作用下依舊擁有保持原有運動的趨勢,繼續(xù)沿慣性力的方向運動,當平面篩的篩面做周期性往復(fù)運動時,有可能使物料在篩面上出現(xiàn)四種不同情況:(1) 物料沿篩面傾斜方向向下滑動,并與篩面接觸,或稱正向運動。(2) 物料沿篩面傾斜方向向上滑動,并與篩面接觸,或稱反向運動。(3) 物料跳離篩面,并沿篩面不多向前做拋物線運動。(4) 相對靜止,物料與篩面無相對運動,這種情況因避免出現(xiàn)。一般對篩子采用(1)、(2)相結(jié)合的運動狀態(tài)作為篩選工作條件,且要求正向移動必須大于反向移動,才能正常工作。該機械在工作時操作方便,分級效果顯著,混級率較低,在篩選過程中,不會出現(xiàn)傷果現(xiàn)象,自身結(jié)構(gòu)簡單,修理維護容易,成本低。1.2總體設(shè)計慣性式紅棗分級機結(jié)構(gòu)示意圖如下:1.傳動軸 2.主動鏈輪 3.主動曲柄 4.鉸鏈座 5.從動鏈輪 6.短連桿 7.長連桿 8.滑塊 9.導(dǎo)軌 10.上層分級篩 11.中層分級篩 12.卸料斗 13.下層分級篩圖1 慣性式紅棗分級裝置該機械由功率為3kW的電機驅(qū)動,工作時電機將驅(qū)動力通過傳動軸傳遞給主動曲柄,主動曲柄做勻速圓周運動,從動曲柄隨著主動曲柄做變速圓周運動,并帶動長連桿和平面篩做來回往復(fù)運動將篩面上的紅棗進行分級。中層篩和上層篩通過從動鏈輪帶動從動軸同理做來回往復(fù)運動,分選出來的紅棗在慣性力的作用下由卸料口卸下。本機整體由三部分組成,即雙曲柄機構(gòu)、篩選機構(gòu)、卸料部分組成。雙曲柄機構(gòu)主要是將電機的驅(qū)動力轉(zhuǎn)換為平面篩做來回往復(fù)運動的慣性力。篩選機構(gòu)是有三層平面篩組成,其作用是將不同形狀的紅棗按要求分為四個等級。卸料部分的作用是將分選出來的紅棗從平面篩上卸下,完成分級分選過程。2.主要技術(shù)參數(shù)外形尺寸/mm 平面篩尺寸/mm 曲柄轉(zhuǎn)速 r/min 120生產(chǎn)率 kg/min 20驅(qū)動電機: 3KW 1500r/min3主要部件的設(shè)計3.1雙曲柄機構(gòu)的設(shè)計(1)速度變化系數(shù)K 如圖2所示,在曲柄回轉(zhuǎn)一周的過程中有兩次與機架平行的位置,此時主動曲柄與從動曲柄瞬時角速度相等。當連桿從第一個平衡位置運動到第二個平衡位置時,主動曲柄轉(zhuǎn)過的角度,從動曲柄轉(zhuǎn)過的相應(yīng)角度為。根據(jù)運動分析可知,在區(qū)間(,) 內(nèi), 從動曲柄的類角速度 ( 即 ) , 稱為慢轉(zhuǎn)階段; 在其余區(qū)間(,) 內(nèi), ( 即) , 稱為快轉(zhuǎn)階段。定義從動曲柄快轉(zhuǎn)階段與慢轉(zhuǎn)階段平均角速度之比為雙曲柄機構(gòu)的速度變化系數(shù)K 。系數(shù)K 表示從動曲柄的速度變化程度, 它是機構(gòu)傳動性能的一個重要指標。圖2如圖2 所示。分別過 和點作線段 和 的平行線交機架AD 的延長線于F 和G 點。為了便于計算, 取機架長度d = 1。依據(jù)圖示的幾何關(guān)系可得:,則速度變化系數(shù)k 的計算公式為(2)雙曲柄機構(gòu)計算 如圖2所示, 在雙曲柄機構(gòu)中, 主動曲柄與機架的兩次共線位置 和 是傳動角的兩個極小值位置, 對應(yīng)的傳動角分別記為 和, 在快轉(zhuǎn)階段中, 而 在慢轉(zhuǎn)階段中。根據(jù)機構(gòu)的工作狀況, 常常會提出不同的 和。如果= 則稱雙曲柄機構(gòu)為最佳傳動雙曲柄機構(gòu)。采用相對尺寸表示機構(gòu), 即設(shè)機架長度。此時, 機構(gòu)共有三個參數(shù)可選擇。由余弦定理可得: 公式( 3) 提供了兩個約束, 因此機構(gòu)只有一個參數(shù)可以自由選擇。設(shè)c 為變量, 由公式( 3) 解得:式中, 在雙曲柄機構(gòu)中, 機架d = 1 是最短構(gòu)件。因此b 和c都大于1。如果c 2/ E ,分母大于0, 分子中帶根號項的絕對值大于前一項的絕對值。所以, 根號前的符號只能取正號。即 如果c 2/ E , 式中的分母小于0, 分子中帶根號項的絕對值小于前一項絕對值。要保證b 大于0, 就必須保證F 大于0, 即 。公式( 4) 根號內(nèi)的代數(shù)式必須大于或等于0。由此可解得兩組根 和,二組根不符合雙曲柄機構(gòu)存在條件,所以應(yīng)當舍去。此外, 考慮到機構(gòu)尺寸因素, 根號前面的符號推薦使用+號,這樣使機構(gòu)結(jié)構(gòu)緊湊。綜上所述, 設(shè)計的使用條件為:如果 且如果 利用與是單調(diào)減函數(shù)的特性, 當給定 時, 用簡單迭代法( 一元方程求根方法) 很容易求出c 值。下面是根據(jù)區(qū)間二分法改造的計算過程:( 1) 給定初值c, 迭代精度, 迭代步長 ;( 2) 計算, ;( 3) , 計算 , 直到;( 4) , 計算 , 直到 在本設(shè)計中 取初值2 解得1.9107 1.5036 1.5241由上解得的1.9107 1.5036 1.5241 分別將其擴大10倍得: 圖2.2 AB= =15cm BC= =15cm CD= =19cm AD= =10cm 3.2其他部件篩料機構(gòu)是由平面篩和滑塊導(dǎo)軌組成,滑塊導(dǎo)軌采用TBR25S3滑塊導(dǎo)軌,平面篩和滑塊采用螺栓連接,導(dǎo)軌與機架采用螺栓連接,通過更換平面篩可以實現(xiàn)其他干果等物料的分級,最大程度的利用機械的價值。3結(jié)論1) 本機械總體設(shè)計結(jié)構(gòu)簡單,成本低,適合廣大棗農(nóng)初級加工使用。分機效率在1.5t/h左右。2) 該機械在工作時主要依靠紅棗自生重力和慣性力來實現(xiàn)紅棗的分級,整個過程中對紅棗基本沒有傷害,且混幾率低。3) 工作時操作容易,維護方便,經(jīng)過適當調(diào)整可實現(xiàn)一機多用,能最大程度的利用機械的價值。主要參考文獻 :01蔣新麗,ZKK3642型寬篩面強迫同步直線振動篩在現(xiàn)場的應(yīng)用J. 煤質(zhì)技術(shù).2012.01,782 溫義德,HDZK3645型直線振動篩的應(yīng)用與改造 J. 煤炭加工與綜合利用, 2011.02,20243 穆存遠,慣性振動篩運動主參數(shù)設(shè)計J. 機械設(shè)計. 2000(08),65684 王峰,篩分機的電機功率的選擇和計算J. 選煤技術(shù). 1991(04) ,25275 張會芳、沈惠平、楊廷力、黃秀芹, 一種新型并聯(lián)運動振動篩主機構(gòu)及其運動學(xué)分析J. 江蘇工業(yè)學(xué)院學(xué)報. 2007(02),26 李玉鳳、李永志、潘東明、張學(xué)成、鮑玉新, 直線振動篩運動學(xué)參數(shù)的確定J. 煤礦機械. 2008(03) ,54567 劉少剛、韓繼光,對心雙曲柄滑塊機構(gòu)急回特性研究J. 林業(yè)機械與木工設(shè)備. 2004(02) ,37408 韓繼光、劉少剛,按傳動角設(shè)計尺寸和最小的雙曲柄機構(gòu)設(shè)計J. 林業(yè)機械與木工設(shè)備. 2004(09) ,47509 張春雨,曲柄滑塊機構(gòu)的解析新法J. 安徽農(nóng)業(yè)技術(shù)師范學(xué)院學(xué)報. 2000(03),4Inertial type red jujube grade machine design(College of Mechanical and Electrical Engineering,Tarim University,Alar 843300,China)Abstract: based on the southern region of xinjiang red jujube planting area enlarged, and has formed the scale of planting trend, red jujube yield is high. But in the process of sorting machinery red jujube, mixed grade rate is still serious, so design a kind of inertia type red jujube grading device. The machine USES double crank mechanism as inertial output device, but will shape the different red jujube in the specified requirements for grading sorting. The main mechanical structure by feeding device, grading device, unloader device a few parts, whole mechanism compact, simple operation, convenient maintenance, and after due after adjustment for other dried fruit classification sorting, can achieve multi-usage effect.慣性式紅棗分級裝置開題報告1、本課題來源及研究的目的和意義目前,全國紅棗種植面積約2300萬畝,總產(chǎn)量350萬噸以上,平均單產(chǎn)越140公斤,但內(nèi)地大部分紅棗產(chǎn)區(qū)降雨量較多,病蟲害比較嚴重,紅棗之制干后質(zhì)較差,近年來感知紅棗主產(chǎn)區(qū)已慢慢向轉(zhuǎn)移。南疆地區(qū)有著優(yōu)越的光熱資源,很適合紅棗的大面積種植,而且非常有利于紅棗自然成熟和質(zhì)制干,品質(zhì)好,單產(chǎn)高,吸引了大量內(nèi)地紅棗加工企業(yè)落戶。的紅棗形成了獨特的品牌,如“和田玉棗,天山玉棗,四木王”等。的紅棗產(chǎn)業(yè)處于快熟發(fā)展中,兵團規(guī)劃到2012年建設(shè)高產(chǎn)高效紅棗園200萬畝,紅棗總產(chǎn)量80萬噸以上,紅棗產(chǎn)業(yè)發(fā)展?jié)摿薮?。紅棗分級是紅棗干制過程中一個重要的環(huán)節(jié),紅棗分級質(zhì)量的好壞直接影響到紅棗經(jīng)濟效益,目前主要采用人工分級,勞動強度大,成本高,而且分及質(zhì)量受人為因素影響較大,分級質(zhì)量無法確保,紅棗的自動分集技術(shù)已成為影響其產(chǎn)業(yè)發(fā)展的一個重要因素。本設(shè)計通過研究紅棗分級工藝及分級標準,進行紅棗分級裝置喂料.分級等關(guān)鍵機構(gòu)進行設(shè)計,最終設(shè)計成慣性式紅棗分級裝置,解決人工分級中存在的問題,提升紅棗加工產(chǎn)業(yè)的技術(shù)水平,解放勞動力,提高紅棗經(jīng)濟效益。2、本課題所涉及的問題及國內(nèi)(外)研究現(xiàn)狀及分析目前,國外的果蔬自動分選機較為先進,自動化.標準化水平較高,很值得我們借鑒。而國內(nèi)紅棗分級裝置多而雜,我國對智能化程度較高的果品分選機的研制尚處于起步階段,對水果品質(zhì)檢測及自動分級研究時間不長,國內(nèi)目前生產(chǎn)的水果分級設(shè)備基本還限于機械分級階段,主要進行大小、重量的分級,自動分級設(shè)備基本還處于實驗室階段,依舊存在著很多問題亟待解決。目前我國的紅棗分級機主要有以下幾種:一種是按重量分級,同時可進行色澤進行選別的電腦控制的全自動代設(shè)備,此設(shè)備技術(shù)含量高,價格昂貴,國內(nèi)少數(shù)企業(yè)能做。 一種是很早以前的滾筒式分級機,現(xiàn)已經(jīng)被大多數(shù)廠淘汰不用,主要原因是在分級過程中,因棗子為橢圓形,會卡入分級條形欄中,產(chǎn)量小,并影響棗子的質(zhì)量,及分級效果,造成一定的經(jīng)濟損失。 第三種,就是皮帶程V字形,下面加V字形滾杠的傳輸,此種分級方式理論上應(yīng)是很好的,類似于以前的菠蘿分級機,在其基礎(chǔ)上加上V字形皮帶,因此分級機本人未能實際接觸,不加以過多評價。 第四種,是三滾杠式分級機,此種分級機,由三根滾杠,上兩下一,托住物料前進,但因滾杠的轉(zhuǎn)動,物料在里面受的壓力增大,所以會有擠壓的現(xiàn)象發(fā)生,導(dǎo)致成大棗子在擠壓的情況下進入小棗子的出料處,分級不均,目前一些廠已經(jīng)不再生產(chǎn)此設(shè)備。 第五種,是雙滾杠,級別之間有落差的分級機,采用兩根滾杠帶動物料,前進,滾杠之間距離固定,下一級滾杠間距大于上一級,此種分級機由我公司工程師安有成設(shè)計而成,但因滾杠之間跟離不變,存在同樣的與滾筒式分級機一樣的卡棗問題,雖經(jīng)改進,仍未能完全克服,并此設(shè)備占地面積大,成本高。第六種,雙滾杠分級機,此種分級機是我公司最新完成的分級機,借助國外成功經(jīng)驗,完全克服了卡棗的問題。物料由兩根滾杠帶動前進,滾杠自身間距慢慢變大,不存在卡棗的地方,并且成本相對低,效率好,產(chǎn)量大,占地小。盡管機械式紅棗分級技術(shù)存在明顯的缺陷,但由于一方面使用對象大多是種植規(guī)模較小的棗農(nóng); 另一方面我國基于機器視覺紅棗 級技術(shù)大都處于試驗室及探索階段,且價格昂貴,機械式紅棗分級機在一段時間內(nèi)還有廣大市場。隨著紅棗分級技術(shù)的發(fā)展,基于機器視覺的紅棗分級機在特定使用對象方面取代現(xiàn)有的機械式紅棗分級機是必然趨勢3、對課題所涉及的任務(wù)要求及實現(xiàn)預(yù)期目標的可行性分析成功設(shè)計出紅棗分級機應(yīng)有以下幾個任務(wù)要求:1、省電耐用、方便快捷、外形美觀、操作簡便、效率高、體積小、壽命長、安全等優(yōu)點。2、結(jié)構(gòu)緊湊,運轉(zhuǎn)平穩(wěn),工作可靠,且維修方便。3、可將不同形狀的紅棗按形狀和質(zhì)量進行分級。4、多用途,進行適當調(diào)節(jié)后可進行其他干果的分級挑選。4、本課題需要重點研究的、關(guān)鍵的問題及解決的思路4.1 研究內(nèi)容本課題重點研究慣性式紅棗分級裝置的設(shè)計,實現(xiàn)紅棗慣性式分級。本裝置根據(jù)慣性原理,可將紅棗按形狀質(zhì)量及其慣性的不同進行標準化.自動化分級。并且可根據(jù)需要進行相應(yīng)調(diào)整后可對其他干果進行分級,如杏干.銀杏等。4.2解決思路解決的思路如下:(1)動力源的選擇;(2)確定傳動機構(gòu);(3)慣性分級機構(gòu)的結(jié)構(gòu)設(shè)計;(4)畫出裝配圖。(5)對傳動軸、鏈輪及連桿進行受力分析。5、完成本課題的工作方案及進度計劃完成本課題的方案:在原紅棗分級機基礎(chǔ)上,對分級裝置進行設(shè)計,采用慣性分級原理,改進紅棗分級裝置,達到效率高、壽命長、造作簡單、維護方便等優(yōu)點。第1-2周 查閱相關(guān)文獻,撰寫開題報告。第3-4周 調(diào)查走訪紅棗加工企業(yè),進行測量,比較,決定設(shè)計方案。第5-6周 根據(jù)工作要求,查閱相關(guān)手冊,對各部分機構(gòu)設(shè)計、計算,畫草圖。第7-8周 運用AutoCAD軟件,畫裝配圖。第9-10周 從工藝性能,經(jīng)濟性能,實用性能等方面對產(chǎn)品進行綜合評價,校核,修正。第11-12周 完成產(chǎn)品說明書,準備答辯。6、主要參考文獻1 馬學(xué)武,何建國. 基于機器視覺紅棗無損自動分級設(shè)備的研制J. 寧夏工程技術(shù), 2008,(03) .2 王松磊,何建國,賀曉光,張冬,詹志彪. 紅棗自動分級機分級執(zhí)行系統(tǒng)的研制J. 寧夏工程技術(shù), 2009,(033賀曉光,何建國,王松磊. 靈武長棗自動分級機輸送系統(tǒng)的研制J. 寧夏農(nóng)林科技, 2008,(06) .4張雪松. 基于線陣CCD的紅棗分選技術(shù)J. 食品與機械, 2008,(03) .5袁麗,努爾夏提朱馬西,楊軍,李忠新,沈衛(wèi)強. 柵條滾筒式杏干分級機的試驗研究J. 農(nóng)機化研究, 2006,(06) .6李彩云,吳曉君,郝博揚. 基于USS協(xié)議下PLC在紅棗加工系統(tǒng)中的應(yīng)用J. 農(nóng)機化研究, 2009,(06) .7李湘萍. 6ZF0.5型紅棗分級機的試驗研究J. 山西農(nóng)機, 2000,(S1) .8張雪松,神會存. 基于單片機的光電式紅棗分選技術(shù)研究J. 中原工學(xué)院學(xué)報, 2007,(02) .塔里木大學(xué)畢業(yè)設(shè)計1緒論1.1本課題研究的背景、目的和意義目前,全國紅棗種植面積約2300萬畝,總產(chǎn)量350萬噸以上,平均單產(chǎn)越140公斤,但內(nèi)地大部分紅棗產(chǎn)區(qū)降雨量較多,病蟲害比較嚴重,紅棗之制干后質(zhì)較差,近年來感知紅棗主產(chǎn)區(qū)已慢慢向轉(zhuǎn)移。南疆地區(qū)有著優(yōu)越的光熱資源,很適合紅棗的大面積種植,而且非常有利于紅棗自然成熟和質(zhì)制干,品質(zhì)好,單產(chǎn)高,吸引了大量內(nèi)地紅棗加工企業(yè)落戶。的紅棗形成了獨特的品牌,如“和田玉棗,天山玉棗,四木王”等。的紅棗產(chǎn)業(yè)處于快熟發(fā)展中,兵團規(guī)劃到2012年建設(shè)高產(chǎn)高效紅棗園200萬畝,紅棗總產(chǎn)量80萬噸以上,紅棗產(chǎn)業(yè)發(fā)展?jié)摿薮蟆<t棗分級是紅棗干制過程中一個重要的環(huán)節(jié),紅棗分級質(zhì)量的好壞直接影響到紅棗經(jīng)濟效益,目前主要采用人工分級,勞動強度大,成本高,而且分及質(zhì)量受人為因素影響較大,分級質(zhì)量無法確保,紅棗的自動分集技術(shù)已成為影響其產(chǎn)業(yè)發(fā)展的一個重要因素。本設(shè)計通過研究紅棗分級工藝及分級標準,進行紅棗分級裝置喂料.分級等關(guān)鍵機構(gòu)進行設(shè)計,最終設(shè)計成慣性式紅棗分級裝置,解決人工分級中存在的問題,提升紅棗加工產(chǎn)業(yè)的技術(shù)水平,解放勞動力,提高紅棗經(jīng)濟效益。1.2國內(nèi)外現(xiàn)狀分析目前,國外的果蔬自動分選機較為先進,自動化.標準化水平較高,很值得我們借鑒。而國內(nèi)紅棗分級裝置多而雜,我國對智能化程度較高的果品分選機的研制尚處于起步階段,對水果品質(zhì)檢測及自動分級研究時間不長,國內(nèi)目前生產(chǎn)的水果分級設(shè)備基本還限于機械分級階段,主要進行大小、重量的分級,自動分級設(shè)備基本還處于實驗室階段,依舊存在著很多問題亟待解決。目前我國的紅棗分級機主要有以下幾種:一種是按重量分級,同時可進行色澤進行選別的電腦控制的全自動代設(shè)備,此設(shè)備技術(shù)含量高,價格昂貴,國內(nèi)少數(shù)企業(yè)能做。 一種是很早以前的滾筒式分級機,現(xiàn)已經(jīng)被大多數(shù)廠淘汰不用,主要原因是在分級過程中,因棗子為橢圓形,會卡入分級條形欄中,產(chǎn)量小,并影響棗子的質(zhì)量,及分級效果,造成一定的經(jīng)濟損失。 第三種,就是皮帶程V字形,下面加V字形滾杠的傳輸,此種分級方式理論上應(yīng)是很好的,類似于以前的菠蘿分級機,在其基礎(chǔ)上加上V字形皮帶,因此分級機本人未能實際接觸,不加以過多評價。 第四種,是三滾杠式分級機,此種分級機,由三根滾杠,上兩下一,托住物料前進,但因滾杠的轉(zhuǎn)動,物料在里面受的壓力增大,所以會有擠壓的現(xiàn)象發(fā)生,導(dǎo)致成大棗子在擠壓的情況下進入小棗子的出料處,分級不均,目前一些廠已經(jīng)不再生產(chǎn)此設(shè)備。 第五種,是雙滾杠,級別之間有落差的分級機,采用兩根滾杠帶動物料,前進,滾杠之間距離固定,下一級滾杠間距大于上一級,此種分級機由我公司工程師安有成設(shè)計而成,但因滾杠之間跟離不變,存在同樣的與滾筒式分級機一樣的卡棗問題,雖經(jīng)改進,仍未能完全克服,并此設(shè)備占地面積大,成本高。第六種,雙滾杠分級機,此種分級機是我公司最新完成的分級機,借助國外成功經(jīng)驗,完全克服了卡棗的問題。物料由兩根滾杠帶動前進,滾杠自身間距慢慢變大,不存在卡棗的地方,并且成本相對低,效率好,產(chǎn)量大,占地小。盡管機械式紅棗分級技術(shù)存在明顯的缺陷,但由于一方面使用對象大多是種植規(guī)模較小的棗農(nóng); 另一方面我國基于機器視覺紅棗 級技術(shù)大都處于試驗室及探索階段,且價格昂貴,機械式紅棗分級機在一段時間內(nèi)還有廣大市場。隨著紅棗分級技術(shù)的發(fā)展,基于機器視覺的紅棗分級機在特定使用對象方面取代現(xiàn)有的機械式紅棗分級機是必然趨勢1.3慣性式紅棗分級裝置性能的要求本課題重點研究慣性式紅棗分級裝置的設(shè)計,實現(xiàn)紅棗慣性式分級。本裝置根據(jù)慣性原理,可將紅棗按形狀質(zhì)量及其慣性的不同進行標準化.自動化分級。并且可根據(jù)需要進行相應(yīng)調(diào)整后可對其他干果進行分級,如杏干.銀杏等。成功設(shè)計出紅棗分級機應(yīng)有以下幾個任務(wù)要求:(1) 省電耐用、方便快捷、外形美觀、操作簡便、效率高、體積小、壽命長、安全等優(yōu)點。(2) 結(jié)構(gòu)緊湊,運轉(zhuǎn)平穩(wěn),工作可靠,且維修方便。(3)可將不同形狀的紅棗按形狀和質(zhì)量進行分級。(4)多用途,進行適當調(diào)節(jié)后可進行其他干果的分級挑選。2慣性式紅棗分級機的總體設(shè)計2.1設(shè)計題目分析(1)給定數(shù)據(jù)生產(chǎn)率: 20kg/min驅(qū)動電機: 3KW 1500r/min灰棗分級規(guī)格: 寬b 質(zhì)量 b26mm m6.5g b=23-25 m=5g-6.4g b=21-23 m=4.1g-4.9g b20 m 2/ E ,分母大于0, 分子中帶根號項的絕對值大于前一項的絕對值。所以, 根號前的符號只能取正號。即 如果c 2/ E , 式中的分母小于0, 分子中帶根號項的絕對值小于前一項絕對值。要保證b 大于0, 就必須保證F 大于0, 即 。公式( 4) 根號內(nèi)的代數(shù)式必須大于或等于0。由此可解得兩組根 和。第二組根不符合雙柄機構(gòu)存在條件,所以應(yīng)當舍去。此外, 考慮到機構(gòu)尺寸因素, 根號前面的符號推薦使用+號,這樣使機構(gòu)結(jié)構(gòu)緊湊。綜上所述, 設(shè)計的使用條件為:如果 且如果 利用與是單調(diào)減函數(shù)的特性, 當給定 時, 用簡單迭代法( 一元方程求根方法) 很容易求出c 值。下面是根據(jù)區(qū)間二分法改造的計算過程: 給定初值c, 迭代精度, 迭代步長 ; 計算, ; , 計算 , 直到; , 計算 , 直到 曲柄及連桿的長度計算在本設(shè)計中 取初值2 解得1.9107 1.5036 1.52413.2雙曲柄機構(gòu)的確定由上解得的1.9107 1.5036 1.5241 分別將其擴大10倍得: 圖3-2 雙曲柄機構(gòu) AB= =15cm BC= =15cm CD= =19cm AD= =10cm CQ= DQ= 3.3雙曲柄機構(gòu)校核在圖2-3中,分析了機構(gòu)的運動情況,得到了速度、加速度和位移的計算公式。A點的加速度:當時,式中,已知n=120r/min R=0.1m解得當時,解得A點的慣性力:當曲柄轉(zhuǎn)至位置1時,慣性力 (為慣性篩質(zhì)量,為篩面上物體的質(zhì)量)慣性篩質(zhì)量約為25kg,每分鐘加工紅棗20kg平均速度物料移過1.5m篩體所需時間篩面上的物料此時當曲柄轉(zhuǎn)到位置2時,使連桿產(chǎn)生壓縮,此時:連桿均采用雙頭鉸鏈式,當曲柄、連桿、篩體上的移動點A三點在一條直線上時,連桿內(nèi)部不是受最大拉力就是受最大壓力。曲柄轉(zhuǎn)n次近似對應(yīng)變化了n次。所以連的破壞認為是疲勞破壞。受變動應(yīng)力決定連桿截面積:對稱循環(huán)下的許用應(yīng)力n為強度裕度,變動載荷時一般取變動彎曲時:變動拉伸時:材料取60 Mn 鋼,=4555=2030連桿截面積的選?。?,取 則圖3-3 連桿截面由圖可知 ,連桿截面積遠大于計算面積,符合要求,同理可校核其它連桿均符合要求。4鏈輪傳動的設(shè)計4.1滾子鏈傳動的設(shè)計鏈輪齒數(shù)選=27 由于采用傳動,所以本機械中鏈輪齒數(shù)均相等。鏈條節(jié)數(shù)初定中心距 則:=96節(jié)計算功率鏈條節(jié)距采用單排鏈,故實際中心距計算鏈速符合要求作用在軸上的壓力 取 則:4.2鏈傳動的布置、張緊和潤滑鏈傳動的布置鏈傳動一般應(yīng)布置在鉛垂平面內(nèi),盡可能避免布置在水平或傾斜平面內(nèi)。如確有需要,則應(yīng)考慮加脫板或張緊輪等裝置,并且設(shè)計較緊湊的中心距。鏈傳動的張緊鏈傳動張緊的目的,主要是為了避免在鏈條的垂度過大時產(chǎn)生嚙合不良和鏈條的振動現(xiàn)象;同時也為了增加鏈條與嚙合包角。當兩輪軸心連線傾斜角大于60度時,通常設(shè)有張緊裝置。由于本設(shè)計傾斜角在60度的范圍內(nèi),故不需要有張緊裝置。鏈傳動的潤滑鏈傳動的潤滑十分重要,對高速、重載的鏈傳動更為重要。良好的潤滑可緩和沖擊,減輕磨損,延長鏈條使用壽命。潤滑油推薦采用牌號為L-AN32,L-AN46,L-AN68的全損耗系統(tǒng)用油。溫度低時取前者。對于開式重載低速傳動,可在潤滑油中加入MoS2,WS2等添加劑。對用潤滑油不便的場合,允許涂抹潤滑脂,但應(yīng)定期清洗和涂抹。4.3鏈輪的結(jié)構(gòu)和材料鏈輪的齒廓形狀對傳動質(zhì)量有重要的影響,正確的鏈輪齒形應(yīng)保證鏈節(jié)能平穩(wěn)的進入和退出嚙合,盡量降低接觸應(yīng)力,減小磨損和沖擊,還應(yīng)便于加工。目前常用的一種是三圓弧一直線齒形(如圖4-1(a)所示,由三圓弧、aa、ab、cd和一直線bc組成),并用相應(yīng)的標準刀具加工,只需一把滾刀便可切制節(jié)距相同而齒數(shù)不同的鏈輪。在鏈輪工作圖中,端面齒形不必畫出,但要在圖上注明“齒形按3R GB12441985 規(guī)定制造” 。鏈輪的軸面齒形需畫出如(圖4-1(b)),兩側(cè)齒廓為圓弧狀,以利于鏈節(jié)進入和退出嚙合。 圖4-1(a)端面齒形 圖4-1(b)軸面齒形鏈輪的主要尺寸:滾子外徑鏈輪節(jié)距p=24.45mm軸孔直徑 分度圓弦齒高 齒側(cè)凸緣直徑 分度圓直徑 齒頂圓直徑 齒根圓 最大齒根距離(奇數(shù)) 5傳動系統(tǒng)分析計算5.1分析傳動系統(tǒng)工作情況傳動系統(tǒng)的作用作用:介于機械中原動機與工作機之間,主要將原動機的運動和動力傳給工作機,在此起減速作用,并協(xié)調(diào)二者的轉(zhuǎn)速和轉(zhuǎn)矩。傳動方案的特點特點:結(jié)構(gòu)簡單、效率高、容易制造、使用壽命長、維護方便。由于電動機、減速器與滾筒并列,導(dǎo)致橫向尺寸較大,機器不緊湊。但齒輪的位置不對稱,高速級齒輪布置在遠離轉(zhuǎn)矩輸入端,可使軸在轉(zhuǎn)矩作用下產(chǎn)生的扭轉(zhuǎn)變形和軸在彎矩作用下產(chǎn)生的彎曲變形部分地抵消,以減緩沿齒寬載荷分布有均勻的現(xiàn)象。電機和工作機的安裝位置電機安裝在遠離高速軸齒輪的一端,并用聯(lián)軸器連接;工作機安裝在遠離低速軸齒輪的一端,并用聯(lián)軸器連接。計算總傳動比i,總效率,傳動系統(tǒng)簡圖如下圖5-1 傳動系統(tǒng)5.2確定電機型號根據(jù)工作條件:室內(nèi)常溫、灰塵較大、兩班制、連續(xù)單向運行,載荷較平穩(wěn),電壓為380V的三相交流電源,電動機輸出功率P=3kw,及同步轉(zhuǎn)速n=1500r/min等,選用Y系列三相異步電動機,型號為Y100L2-4,其主要性能數(shù)據(jù)如表5.1:表 5.1 主要性能數(shù)據(jù)電機型號額定功率PM滿載轉(zhuǎn)速nm同步轉(zhuǎn)速n凈重Y100L2-43kw1430r/min1500r/min38kg計算傳動裝置各級傳動比和效率1、各級傳動比: 其余傳動比均為12、各級效率: 計算各軸的轉(zhuǎn)速功率和轉(zhuǎn)矩如表4.2表 5.2 主要參數(shù)軸名功率P(kw)轉(zhuǎn)矩T(N*m)轉(zhuǎn)數(shù)nr/min傳動比i輸入輸出輸入輸出電動機軸319.03143011.2軸2.882.73205.34194.61341軸2.632.58187.5183.951341軸2.482.38176.8169.71345.3軸的設(shè)計軸的最小直徑的確定按扭轉(zhuǎn)強度條件計算這種方法是只按軸所受的扭矩來計算軸的強度;如果還受有不大的彎矩時,則用降低需用扭轉(zhuǎn)切應(yīng)力的辦法予以考慮。在作軸的結(jié)構(gòu)設(shè)計時,通常用這種方法初步估算軸徑。對于不大重要的軸,也可作為最后計算結(jié)果。軸的扭轉(zhuǎn)強度條件為 式中:扭轉(zhuǎn)切應(yīng)力,單位為MPa; T軸所受的扭矩,單位為Nmm; 軸的抗扭截面系數(shù),單位為mm3 軸的轉(zhuǎn)速,單位為r/min; 軸傳遞的功率,單位為Kw; 計算截面處軸的直徑,單位為mm; 需用扭轉(zhuǎn)切應(yīng)力,單位為MPa;表5.3軸常用幾種材料的及軸的材料Q235-A、20Q275、354515-2520-3525-4535-55149-126135-112126-203112-97軸的直徑 式中 取軸的結(jié)構(gòu)設(shè)計擬定軸上零件的裝配方案,確定軸的各段直徑和長度。1號軸:圖5-2 第一軸第一段的直徑為了滿足聯(lián)軸器的軸向定位要求,第一段軸左端需制出一段鍵槽,故第二段軸的直徑,用來配合軸承座。第三段軸 中間開鍵槽,用來固定鏈輪。第四段軸直徑 ,用來配合軸承座。第五段軸直徑 右端開鍵槽,用來固定曲柄。2號和3 號軸圖5-3 第二、三軸第一段軸直徑,用來配合軸承座。第二段軸直徑,軸上開鍵槽用來固定鏈輪。第三段軸直徑,用來配合軸承座。第四段軸直徑,右端開鍵槽,用來固定主動曲柄。4號軸 圖5-4 第四軸 第一段軸直徑,第二段軸直徑,用來配合軸承座。第三段軸直徑,右端開鍵槽,用來固定從動曲柄。軸上零件的周向定位鏈輪、與軸的周向定位均采用平鍵聯(lián)接。由機械設(shè)計教材表4-1,查得平鍵截面當時,當時。當時。當時。鍵槽用鍵槽銑刀加工,同時為了保證鏈輪與軸配合有良好的對中性,故選擇齒輪輪轂與軸的配合為;同樣,曲柄與軸的聯(lián)接,選用平鍵連接,帶輪與軸的配合為。滾動軸承軸的周向定位是借過度配合來保證的,此處選軸的直徑尺寸公差為。確定軸上圓角和倒角尺寸取軸端倒角為,各軸肩處的圓角半徑見軸零件圖。軸的載荷首先根據(jù)軸的結(jié)構(gòu)圖作出軸的計算簡圖。在確定軸承的支承點位置時,應(yīng)從手冊中查取B值(參看機械設(shè)計教材圖15-23)。對于6211型深溝球軸承,由手冊查得B=21mm.因此,作為簡支梁的軸的支承跨距。5.4軸的校核鏈輪的力分析計算I軸: 圓周力 徑向力 支座反力分析定跨距測得:;水平反力: 垂直反力: 當量彎矩水平彎矩: 垂直面彎距: 合成彎矩: ;取得:當量彎矩: 校核強度按扭合成應(yīng)力校核軸的強度。由軸的結(jié)構(gòu)簡圖及當量彎矩圖可知截面C處當量彎矩最大,是軸的危險截面。進行校核時,只校核軸上承受最大當量彎矩的截面的強度,軸的強度校核公式 其中:因為軸的直徑為d=55mm的實心圓軸,故取 因為軸的材料為45鋼、調(diào)質(zhì)處理查1P330取軸的許用彎曲應(yīng)力為: 合格 結(jié)論根據(jù)軸承號6211查表取軸承基本額定動載荷為:C=43200N;基本額定靜載荷為:Cor=29200N由軸承壽命公式得: 因為實際壽命 所以 故軸承使用壽命足夠、合格。結(jié)論在設(shè)計方面,本設(shè)計采用機械式分級原理,主要采用雙曲柄機構(gòu)將電機的的輸出轉(zhuǎn)化為慣性力機械造價成本較低,節(jié)省勞動力,節(jié)省了農(nóng)機戶的生產(chǎn)成本,同時產(chǎn)品經(jīng)過分處理后價值大大提高,可有效增加農(nóng)機戶的收入。而技術(shù)方面,慣性式紅棗分級裝置是根據(jù)慣性原理,將不同尺寸的紅棗進行分級,分級效率適中,適合一些小型紅棗加工企業(yè)和農(nóng)戶自我加工使用,該裝置成本較低,使用方便,操作簡單,維護修理容易。在對網(wǎng)篩進行更換后可對其他干果進行分級,用途廣泛。但分級效率較低,不適宜大仙加工企業(yè)使用,還有待改進。致 謝自2011年11月接受課題到現(xiàn)在完成畢業(yè)設(shè)計,衷心的感謝我的指導(dǎo)老師李宜峰安老師給予了精心的指導(dǎo)和熱情的幫助,在我設(shè)計初期由于對畫圖軟件的不熟悉,使我感到迷茫和恢心的時候,李宜峰老師及時的開導(dǎo)我,鼓勵我,幫助我。李宜峰老師能夠從忙碌的工作中抽出時間悉心教導(dǎo)我,督促我,使我在軟件的應(yīng)用上有了很大進步。同時也學(xué)到了許多書本上學(xué)不到的知識,受益匪淺,這樣使得我得以順利的完成畢業(yè)設(shè)計的工作 ,而且將繼續(xù)激勵我在今后的人生旅途上不斷進取,謹此向李宜峰老師表示衷心的感謝和崇高的敬意!在此我還要感謝王老師,雖然肖老師有事不能帶我完成整個畢業(yè)設(shè)計,但是在我有困惑的時候,肖老師仍會百忙之中抽出時間給我講解,并給我一些寶貴的意見,這也是我可以完成設(shè)計的一個重要原因;最后感謝所有課題組的輔導(dǎo)老師,在你們的辛苦輔導(dǎo),監(jiān)督下我們才可以完成設(shè)計,向所有的輔導(dǎo)老師中心的說一聲:老師,您辛苦了!大學(xué)四年學(xué)習(xí)時光已經(jīng)接近尾聲,在此我想對我的母校,我的父母親人們,我的老師和同學(xué)們、表達我由衷的謝意。感謝我的母校塔里木大學(xué)給了我在大學(xué)的本科四年深造機會,讓我能繼續(xù)學(xué)習(xí)和提高。塔里木大學(xué)四季如歌的校園,美麗如詩的風(fēng)景都深深的留在了我的記憶里。四年珍貴的學(xué)習(xí)期間,讓我的知識體系更加完善,思想觀念更加成熟,整體素質(zhì)得到了極大的鍛煉?!白詮姴幌?,求真務(wù)實”的校訓(xùn)我將銘記于心,在未來的學(xué)習(xí)和工作中躬身踐行。 最后,祝愿各位老師身體健康,工作順利,學(xué)校越辦越好,桃李滿天下!參考文獻1 蔣新麗,ZKK3642型寬篩面強迫同步直線振動篩在現(xiàn)場的應(yīng)用J.煤質(zhì)技術(shù).2012.01,782 溫義德,HDZK3645型直線振動篩的應(yīng)用與改造 J.煤炭加工與綜合利用, 2011.02,20243 穆存遠,慣性振動篩運動主參數(shù)設(shè)計J.機械設(shè)計. 2000(08),65684 王峰,篩分機的電機功率的選擇和計算J.選煤技術(shù). 1991(04) ,25275 張會芳,沈惠平,楊廷力,黃秀芹, 一種新型并聯(lián)運動振動篩主機構(gòu)及其運動學(xué)分析J.江蘇工業(yè)學(xué)院學(xué)報. 2007(02),20226 李玉鳳,李永志,潘東明,張學(xué)成,鮑玉新,直線振動篩運動學(xué)參數(shù)的確定J.煤礦機械. 2008(03) ,54567 劉少剛,韓繼光,對心雙曲柄滑塊機構(gòu)急回特性研究J.林業(yè)機械與木工設(shè)備. 2004(02) ,37408 韓繼光,劉少剛,按傳動角設(shè)計尺寸和最小的雙曲柄機構(gòu)設(shè)計J.林業(yè)機械與木工設(shè)備. 2004(09) ,47509 張春雨,曲柄滑塊機構(gòu)的解析新法J.安徽農(nóng)業(yè)技術(shù)師范學(xué)院學(xué)報. 2000(03),4623 12 屆畢業(yè)設(shè)計慣性式紅棗分級裝置的設(shè)計 設(shè)計說明書學(xué)生姓名 學(xué) 號 所屬學(xué)院 機械電氣化工程學(xué)院 專 業(yè) 農(nóng)業(yè)機械化及其自動化 班 級 12-1 指導(dǎo)教師 日 期 前 言隨著農(nóng)村產(chǎn)業(yè)結(jié)構(gòu)調(diào)整和市場經(jīng)濟的發(fā)展,紅棗種植面積和產(chǎn)量迅速擴大,已經(jīng)成一些地區(qū)主導(dǎo)經(jīng)濟產(chǎn)業(yè)之一。人們消費理念和水平的提高也帶動了紅棗加工產(chǎn)業(yè)的發(fā)展。在紅棗加工工程中,紅棗分級是一個重要的環(huán)節(jié),無論是鮮棗收購,貯藏保鮮,還是紅棗制干,定量包裝等環(huán)節(jié),作為紅棗商品化加工的第一步,就是對紅棗進行分級分選,以便于以后加工和產(chǎn)品附加值的提高。據(jù)調(diào)查,分級包裝后優(yōu)質(zhì)的“和田玉棗”可以達到260元/kg,但如果未經(jīng)分級大小混雜統(tǒng)一銷售,其售價將遠遠降低。傳統(tǒng)紅棗分級多采用人工分級或簡單的機械分級,不僅分級速度慢效率低,且成本高,分級不精確。很難適應(yīng)紅棗產(chǎn)業(yè)化發(fā)展模式,因此,紅棗分級機的研究與發(fā)展將有助于解決目前紅棗加工過程中對機械設(shè)備的需求,同時提高紅棗生產(chǎn)率及其商品價值。目前,國外的果蔬自動分選機較為先進,自動化.標準化水平較高,很值得我們借鑒。而國內(nèi)紅棗分級裝置多而雜,我國對智能化程度較高的果品分選機的研制尚處于起步階段,對水果品質(zhì)檢測及自動分級研究時間不長,國內(nèi)目前生產(chǎn)的水果分級設(shè)備基本還限于機械分級階段,主要進行大小、重量的分級,自動分級設(shè)備基本還處于實驗室階段,依舊存在著很多問題亟待解決。目 錄1緒論11.1本課題研究的背景、目的和意義11.2國內(nèi)外現(xiàn)狀分析11.3慣性式紅棗分級裝置性能的要求22慣性式紅棗分級機的總體設(shè)計32.1設(shè)計題目分析32.2工作原理32.3機械運動方案及機構(gòu)設(shè)計43慣性機構(gòu)的設(shè)計63.1雙曲柄機構(gòu)的設(shè)計63.2雙曲柄機構(gòu)的確定103.3雙曲柄機構(gòu)校核104鏈輪傳動的設(shè)計134.1滾子鏈傳動的設(shè)計134.2鏈傳動的布置、張緊和潤滑134.3鏈輪的結(jié)構(gòu)和材料145傳動系統(tǒng)分析計算155.1分析傳動系統(tǒng)工作情況155.2確定電機型號155.3軸的設(shè)計165.4軸的校核19結(jié)論21致 謝22參考文獻23Received 29 September 2007; accepted 09 December 2007 Project 50574091 supported by the National Natural Science Foundation of China Corresponding author. Tel: +86-516-82841479; E-mail address: Multi-object optimization design for differential and grading toothed roll crusher using a genetic algorithm ZHAO La-la, WANG Zhong-bin, ZANG Feng School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China Abstract: Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing, high breaking efficiency, multi-sieving and has, for the moment, made up for the short- comings of the toothed roll crusher. The moving jaw of the crusher is a crank-rocker mechanism. For optimizing the dynamic per- formance and improving the cracking capability of the crusher, a mathematical model was established to optimize the transmission angle and to minimize the travel characteristic value m of the moving jaw. Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained. According to the implementation, it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved. Key words: differential and grading toothed roll crusher; crank-rocker mechanism; genetic algorithm; multi-object optimization 1 Introduction Material crushing is an indispensable process for production in many industries (e.g. mining, metal- lurgy, chemical industry). Traditional crushers (e.g., jaw crusher, impact hammer crusher, rotary crusher and hammer mill) mainly depend on the working parts that put the impact pressure on the materiel to be crushed in order to implement crushing. Crushers are of unwieldiness, low efficiency and high energy consumption. These disadvantages have greatly re- stricted efforts to improve their crushing capability. The traditional crushers we already have cannot meet the current needs of production. In recent years, a number of British MMD toothed roll crushers have been used. But from casual investigation, we find some shortcomings in these toothed roll crushers: 1) Material crushing is realized by meshing teeth. All the raw minerals to be crushed are sent into a crush- ing chamber and discharged by force through the meshing teeth including those up to the standard of particulates. The crushers, failing to accomplish real grading crushing, using up a lot of energy, are ineffi- cient and the crushing teeth quickly show damage from metal fatigue. 2) The phenomenon of jam oc- curs under two conditions. One is a high flow in which large chunks of coal are mixed with small pieces. The other one is high humidity in which teeth become clogged with wet coal. Because the toothed roll crusher has no effective grading mechanism, the result is unsatisfactory and we cannot depend solely on the overworked meshing teeth. According to in- vestigations in a number of coal mines using MMD toothed roll crushers, we found that none of them could even reach the nominal amount of crushed ma- terial. 3) The crushing capability of MMD crushers is improved by increasing the power and strength of transmission parts, resulting in high power consump- tion and costs. Based on these considerations, com- bined with the demand of the China Shenhua Energy Co., Ltd. and the Shendong Coal Branch, our research team designed a new, highly efficient differential and grading toothed roll crusher to make up the lacks from traditional crushers 1 . As Fig. 1 shows, the crusher breaking part is com- posed of differential teeth and a crank-rocker mecha- nism. A sketch of the moving jaw crank-rocker mechanism is shown in Fig. 2. In a search for opti- mization designs of a crank-rocker mechanism, it seems that much of the literature consulted aims only at optimizing the transmission angle . For example, Li, et al just opted for minimizing the travel charac- teristic value of the moving jaw m of the jaw crusher 23 . But in a practical and typical crushing process, the capability of the moving jaw is closely related to both the transmission angle and the travel characteristic value of the moving jaw. We have used a GA (genetic algorithm) in order to optimize the J China Univ Mining 2.Roller screen axis; 3.Driving gears; 4.Breaking teeth; 5. Moving jaw; 6.Adjustment mechanism; 7.Frame; 8. Motor assembly of crankshaft; 9.Motor assembly of toothed roll axis Fig. 1 General structure drawing of differential and grading toothed roll crusher Fig. 2 Breaking mechanism sketch of differential and grading toothed roll crusher 2 Kinetic analysis of the crank-rocker mechanism The performance of a hinged four-bar mechanism depends on the relative length of its bars. If we set the length of the rocker c equal to 1, then the relative lengths of the crank, the connecting rod and the body frame are a, b and d. The mathematical model of the design of the crank-rocker mechanism is independent of the actual length, which makes it more universal 4 . 2.1 Optimal transmission angle The transmission force of the crank-rocker mecha- nism depends mainly on the transmission angle . The bigger the transmission angle, the better the transmis- sion force property it has. The transmission angle changes during the process of transmission. The choice of a suitable size for each component can op- timize the minimum transmission angle. Therefore, it is necessary to increase the transmission angle in or- der to improve the transmission force and crushing efficiency. Two possible positions where the minimal trans- mission angle min may appear are shown in Fig. 3: min 1 2 min( , 180 )= (1) where )2/()(arccos 222 1 bcadcb += (2) )2/()(arccos 222 2 bcadcb += (3) Fig. 3 Collinear crank and body frame 2.2 Travel characteristic value m of moving jaw The travel of the moving jaw is divided into a horizontal part s and a vertical part h. The function of the horizontal travel is to crush material, but that of the vertical travel can not help crushing but also can intensify the abrasion of the jaw. Diminishing the value of m can both reduce the energy consumption and the abrasion and simultaneously, it can improve productivity and increase the crushing ratio 2 . Some steps should be taken to decrease the value of m. In order to simplify the calculation, point C is taken out for analysis. The geometric relationships shown in Fig. 4 are: Fig. 4 Collinear crank and connecting rod 22 () 2()cosdbacba =+ (4) Journal of China University of Mining the angle of the toggle plate is: =+ 90; the swing angle of the toggle plate is: 2 2arcsin( 1 2 )smc =+ where is the dip angle of the connecting rod whose magnitude depends on the mechanism and the strength of the moving jaw 3 . Its value ranges usually between 15 to 20. s is the horizontal travel and h the vertical travel. 3 Mathematical model of differential and grading toothed roll crusher moving jaw Depending on the kinetic analysis above, both the transmission angle and the travel characteristic value of point C can be expressed by the relative length of the crank, the connecting rod and the body frame of the crank-rocker mechanism. The design variables are: TT 123 , , ,xxx abd=X The objective function for maximizing the minimal transmission angle of the moving jaw is: 112 ( ) min( , 180 ) maxfx = The objective function for minimizing the travel characteristic value m of the moving jaw is: max 1 )( 2 = h s m xf The following constraints apply: 1) Boundary constraint conditions of design vari- ables: max max (1, 2, 3) iii axbi = where a imax and b imax are the upper and lower limits of design variables. 2) Conditions for the crank-rocker mechanism to possess a crank: ba , 1a , da , dba + 1 , dba +1 , 1+ bda 3) Constraints of the transmission angle: Increasing the transmission angle can improve the transmission efficiency and augment the horizontal travel. But too large a transmission angle has the reverse effect on the stress of the moving jaw and the principal axis 3 . A common condition is that: oo 5545 4) Constraints of the travel characteristic value: according to experience, the range of m usually is between 1.5 and 2.5. 5) Travel of moving jaw: the horizontal travel s has an obvious effect on productivity. If s is too small it would reduce the productivity, but in contrast, it will intensify the crushing force and lead to damage by overloading the equipment 5 . The constraint of the horizontal travel then becomes: min (0.3 0.4)sd where d min is the minimum dimension of the dis- charge port. 6) Angle constraints of the toggle plate. Usually, the range of is 18 to 23. In summary, the optimization problem of the crank-rocker mechanism can be boiled down to the following double programming objective: T 12 max ( ) ( ( ), ( )fx fx f x = XR (9) where T 1 | ( ) ( ( ), ., ( ) 0 n m xEgx gx gx= = R . The traditional solutions of multiple objective op- timization problems achieve low efficiency and can easily lead to an apparent local optimum. But the searching method of GA is iteration in which the pos- sibility of running into a local, optimal solution is reduced and the process of solution is accelerated by the method of disposing of many individuals syn- chronously in the population. By using probable transmission rules to guide searching direction, GA has no special requirement about searching space (e.g. connectedness, convexity, etc.) and does not need any additional information. We have applied GA to opti- mize the crank-rocker mechanism of the differential and grading toothed roll crusher as a multi-object design. 4 Genetic algorithm Genetic algorithm is a randomized searching method, which imitates natural, evolutionary laws. GA was, for the first time, presented by Holland in 1975 with the following main features: it operates on the structured object directly, without any restriction in functional derivation and continuity; it possesses an implicit parallelism and improved capability of global optimization; by using a stochastic optimizing method, it can automatically obtain and guide the searching space for optimization and it can also adjust the search direction adaptively without specific rules 67 . GA has, of late, been an important technol- ogy in intelligent computing. The main approaches of GA are: 1) Encoding: before searching in the data of the solution space, GA expresses the data as a geno- typic string structure and various combinations can ZHAO La-la et al Multi-object optimization design for differential and grading toothed roll 319 obtain different points. 2) Creating an initialized ge- nus group: GA randomly generates N initialized string data, in which each datum is called an individ- ual and these individuals form a genus group. GA starts the iteration by using the string data as an initial point. 3) Estimating individual adaptability: the value of the adaptability function indicates the quality of an individual or the solution. For different problems, the definition of an adaptability function is different. 4) Selection: the purpose of selection is to choose ex- cellent individuals among present genus group and permit them the chance to propagate offspring as parents. Selection is the embodiment of this thought for GA. The principle of the selection is that indi- viduals with high adaptability will have a larger probability to contribute one or more offspring. 5) Crossover: this is the most important operation for GA. Crossover operation can generate new genera- tions that possess the characteristics of the previous generation. It embodies the thought of information exchange. 6) Mutation: at first, GA selects randomly an individual from the genus group. It then changes the value of one datum from the string data with a given probability for the selected individual. Similar to the biological universe, the probability of mutation for GA is also very low; usually its value ranges from 0.001 to 0.01, i.e., mutation provides an opportunity to generate new individuals. 5 Multi-object optimization based on ge- netic algorithm We took the crank-rocker mechanism of the dif- ferential and grading toothed roll crusher with a crushing capacity of 4000 t/h as our optimizing object. In order to decide the length of the crank, the con- necting rod and the body frame of the crank-rocker mechanism when the objective function (9) obtains its maximum value, under the condition that the value of the travel speed ratio coefficient is 1.25, the con- necting rod is 300 mm and the dip angle of the con- necting rod 18. We used GA to solve this problem by setting the genus group scale equal to 50, the crossover probabil- ity at 0.8, the mutation probability at 0.005 and the number of generations in the evolution at 1000. The traditional binary coding method is compara- tively convenient when used in a theoretical analysis. But for multidimensional and high precision numeri- cal problems, it tends to low efficiency and inaccu- racy 8 . We used a natural number coding method to set the three variables a, b and d as genes, which combine orderly into a chromosome 9 . For example, p and q are two in- dividuals. During initialization, GA will generate a genus group in which 50 individuals are produced on the basis of a variable range. We chose Eq.(9) as total objective function whose value denotes individual adaptability. We took individuals p and q as examples to be substituted in Eq.(9), i.e., f(p)=0.8145, f(q)=0.7887, f(p)f(q). This indicates that the indi- vidual adaptability of p is better than that of q. A roulette method is used in the selection operation, in which we imitate a game of roulette and calculate the total adaptability and at the same time the relative and accumulative adaptability for each individual. Then the roulette is turned for 50 times and a random number is created between 0 and 1 for each time. An individual can be selected by comparing the number with the accumulative adaptability for each individual. For example, if we let r be a random number, then f c (i) is the accumulative adaptability of individual i and f c (i+1) is the accumulative adaptability of individual i+1. If f c (i) r f c (i+1), then individual i+1 will be chosen. By analogy, for all the selected individuals we can compose a new genus group and carry out crossover and mutation operations. A single point crossing method is used in crossover operations, generating a random number between 0 and 1 when searching in the genus group. If the number is less than the crossover probability and it has selected an even number of individuals, then the crossover operation can be implemented after pairing randomly. Taking the individuals p and q as a paired example, we set the crossing point as 2, meaning that we choose the second gene to cross over. After the crossover operation, the individuals become p and q . A uniform mutation method is adopted in this mu- tation operation, generating a random number be- tween 0 and 1 when searching in the genus group. If the number is less than the probability of mutation, the current individual will mutate. The mutation op- eration is similar to initialization in which we rebuild genes for an individual by the boundary of design variables. After selection, crossover and mutation operations, an evaluation function is called to insure that the best individual can be preserved. The optimization results (by conversion) are shown in Table 1. Table 1 Result of genetic optimization Optimization variables a (mm) b (mm) d (mm) min () l (m) Optimal values 10.07 690.54 788.01 52.11 0.48 Rounding values 10 691 788 52 0.5 The optimization results, which have been applied in production practice, can satisfy the constraint con- ditions. The Zhengzhou Great Wall Metallurgy Equipment Factory, which cooperated with our re- search team, has produced corresponding crushers which have been sold to a number of mines in China. According to the actual working situation, the differ- ential and grading toothed roll crusher possesses the Journal of China University of Mining & Technology Vol.18 No.2320 characteristics of great crushing strength, high break- ing efficiency, stable working state, high capability of clearing blockage and anti-blocking and stable granularity of crushing products, all of which have met their expected design target. 6 Conclusions We have used genetic algorithm to carry out a multi-object optimized design for the breaking mechanism of a differential and grading toothed roll crusher by selection, crossover and mutation opera- tions under certain constrained conditions. On the basis of this presentation, we may state the following: 1) Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing, high breaking efficiency, multi-sieving and, for the moment, has made up for the shortcomings of the toothed roll crusher. 2) Since it is different from traditional optimizing methods, GA can carry out heuristic global optimiza- tion. It is a parallel, concurrent and gradually evolu- tion searching process in which a local optimum is avoided. 3) The optimization results have been applied in practice and the actual crusher working state is stable. The industrial application has been proven to good effect. It has also been shown that, in order to opti- mize the crusher crank-rocker mechanism for multi-object design with optimizing transmission an- gle and minimizing the travel characteristic of moving jaw m as objective functions, can obtain op- timum results. Acknowledgements The authors wish to express their most sincere ap- preciation to Prof. Huang Jiaxing for giving valuable advice. The authors are also indebted to the Zheng- zhou Great Wall Metallurgy Equipment Factory for providing useful material. References 1 Zhao L L, Zang F, Wang Z B, et al. Design and motion simulation for differential and grading toothed roll crusher. Coal Mine Machinery, 2007, 28(6): 1921. (In Chinese) 2 Li X, Wang G B. Optimum design of compound pendu- lum jaw crusher with genetic algorithms. Construction Machinery, 2006(6): 5562. (In Chinese) 3 Shen Y J. Optimum design for structure parameters of PE250 750 compound pendulum jaw crusher. Machin- ery, 1994, 21(4): 2325. (In Chinese) 4 Zheng S H. Application of genetic algorithm in optimum design of planar crank and rocker mechanisms. Journal of China Institute of Metrology, 1999(2): 7174. (In Chinese) 5 Wang P. Optimum design for crank-rocker mechanism of crusher. Journal of South China Construction University, 1998, 6(2): 6065. (In Chinese) 6 Holland J H. Adaptation in Natural and Artificial Sys- tems. Michigan: The University of Michigan Press, 1975. 7 Pan F P, Gong D W, Sun X Y, et al. Research on novel adaptive genetic algorithm. Journal of China University of Mining & Technology, 2003, 32(1): 6870. (In Chi- nese) 8 Michalewicz Z. Evolution Programsthe Combination of Genetic Algorithm and Data Structures. Beijing: Sci- ence Press, 2000. (In Chinese) 9 Zhang J, Li D L, Li P. Comparative study of genetic algorithms encoding Mechanism. Journal of China Uni- versity of Mining & Technology, 2002, 31(6): 637640. (In Chinese)
收藏