選修2-1第三章空間向量與立體幾何教案
《選修2-1第三章空間向量與立體幾何教案》由會員分享,可在線閱讀,更多相關(guān)《選修2-1第三章空間向量與立體幾何教案(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第三章 空間向量與立體幾何3.1空間向量及其運(yùn)算(一)教學(xué)目標(biāo):知識目標(biāo):空間向量;相等的向量;空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律;能力目標(biāo):理解空間向量的概念,掌握其表示方法;會用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡單的立體幾何中的問題德育目標(biāo):學(xué)會用發(fā)展的眼光看問題,認(rèn)識到事物都是在不斷的發(fā)展、進(jìn)化的,會用聯(lián)系的觀點(diǎn)看待事物教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律教學(xué)難點(diǎn):應(yīng)用向量解決立體幾何問題教學(xué)方法:討論式教學(xué)過程: .復(fù)習(xí)引入師在必修四第二章平面向量中,我們學(xué)習(xí)了有關(guān)平面向量的一些知識,什么叫做向量?向量是怎樣表示的呢?生既有大小
2、又有方向的量叫向量向量的表示方法有:用有向線段表示;用字母a、b等表示;用有向線段的起點(diǎn)與終點(diǎn)字母:師數(shù)學(xué)上所說的向量是自由向量,也就是說在保持向量的方向、大小的前提下可以將向量進(jìn)行平移,由此我們可以得出向量相等的概念,請同學(xué)們回憶一下生長度相等且方向相同的向量叫相等向量.師學(xué)習(xí)了向量的有關(guān)概念以后,我們學(xué)習(xí)了向量的加減以及數(shù)乘向量運(yùn)算:向量的加法:向量的減法:實(shí)數(shù)與向量的積:實(shí)數(shù)與向量a的積是一個向量,記作a,其長度和方向規(guī)定如下:(1)|a|a|(2)當(dāng)0時,a與a同向; 當(dāng)0時,a與a反向; 當(dāng)0時,a0.師關(guān)于向量的以上幾種運(yùn)算,請同學(xué)們回憶一下,有哪些運(yùn)算律呢?生向量加法和數(shù)乘向量滿
3、足以下運(yùn)算律加法交換律:abba加法結(jié)合律:(ab)ca(bc)數(shù)乘分配律:(ab)ab師今天我們將在必修四第二章平面向量的基礎(chǔ)上,類比地引入空間向量的概念、表示方法、相同或向等關(guān)系、空間向量的加法、減法、數(shù)乘以及這三種運(yùn)算的運(yùn)算率,并進(jìn)行一些簡單的應(yīng)用請同學(xué)們閱讀課本P26P27.新課講授師如同平面向量的概念,我們把空間中具有大小和方向的量叫做向量例如空間的一個平移就是一個向量那么我們怎樣表示空間向量呢?相等的向量又是怎樣表示的呢?生與平面向量一樣,空間向量也用有向線段表示,并且同向且等長的有向線段表示同一向量或相等的向量師由以上知識可知,向量在空間中是可以平移的空間任意兩個向量都可以用同一
4、平面內(nèi)的兩條有向線段表示因此我們說空間任意兩個向量是共面的師空間向量的加法、減法、數(shù)乘向量各是怎樣定義的呢?生空間向量的加法、減法、數(shù)乘向量的定義與平面向量的運(yùn)算一樣:=a+b,(指向被減向量),a 師空間向量的加法與數(shù)乘向量有哪些運(yùn)算律呢?請大家驗(yàn)證這些運(yùn)算律生空間向量加法與數(shù)乘向量有如下運(yùn)算律:加法交換律:a + b = b + a;加法結(jié)合律:(a + b) + c =a + (b + c);(課件驗(yàn)證)數(shù)乘分配律:(a + b) =a +b師空間向量加法的運(yùn)算律要注意以下幾點(diǎn):首尾相接的若干向量之和,等于由起始向量的起點(diǎn)指向末尾向量的終點(diǎn)的向量即:因此,求空間若干向量之和時,可通過平移
5、使它們轉(zhuǎn)化為首尾相接的向量首尾相接的若干向量若構(gòu)成一個封閉圖形,則它們的和為零向量即:兩個向量相加的平行四邊形法則在空間仍然成立因此,求始點(diǎn)相同的兩個向量之和時,可以考慮用平行四邊形法則例已知平行六面體(如圖),化簡下列向量表達(dá)式,并標(biāo)出化簡結(jié)果的向量:說明:平行四邊形ABCD平移向量 a 到ABCD的軌跡所形成的幾何體,叫做平行六面體記作ABCDABCD平行六面體的六個面都是平行四邊形,每個面的邊叫做平行六面體的棱解:(見課本P27)說明:由第2小題可知,始點(diǎn)相同且不在同一個平面內(nèi)的三個向量之和,等于以這三個向量為棱的平行六面體的以公共始點(diǎn)為始點(diǎn)的對角線所表示的向量,這是平面向量加法的平行四
6、邊形法則向空間的推廣.鞏固練習(xí)課本P92練習(xí). 教學(xué)反思平面向量僅限于研究平面圖形在它所在的平面內(nèi)的平移,而空間向量研究的是空間的平移,它們的共同點(diǎn)都是指“將圖形上所有點(diǎn)沿相同的方向移動相同的長度”,空間的平移包含平面的平移關(guān)于向量算式的化簡,要注意解題格式、步驟和方法.課后作業(yè)課本P106 1、2、預(yù)習(xí)課本P92P96,預(yù)習(xí)提綱: 怎樣的向量叫做共線向量?兩個向量共線的充要條件是什么?空間中點(diǎn)在直線上的充要條件是什么?什么叫做空間直線的向量參數(shù)表示式?怎樣的向量叫做共面向量?向量p與不共線向量a、b共面的充要條件是什么?空間一點(diǎn)P在平面MAB內(nèi)的充要條件是什么?板書設(shè)計:9.5 空間向量及其
7、運(yùn)算(一)一、 平面向量復(fù)習(xí) 二、空間向量 三、例1定義及表示方法 定義及表示加減與數(shù)乘運(yùn)算 加減與數(shù)乘向量 小結(jié)運(yùn)算律 運(yùn)算律教學(xué)后記:空間向量及其運(yùn)算(2)一、課題:空間向量及其運(yùn)算(2) 二、教學(xué)目標(biāo):1理解共線向量定理和共面向量定理及它們的推論;2掌握空間直線、空間平面的向量參數(shù)方程和線段中點(diǎn)的向量公式三、教學(xué)重、難點(diǎn):共線、共面定理及其應(yīng)用四、教學(xué)過程:(一)復(fù)習(xí):空間向量的概念及表示;(二)新課講解:1共線(平行)向量:如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。讀作:平行于,記作:2共線向量定理:對空間任意兩個向量的充要條件是存在實(shí)數(shù),使
8、(唯一)推論:如果為經(jīng)過已知點(diǎn),且平行于已知向量的直線,那么對任一點(diǎn),點(diǎn)在直線上的充要條件是存在實(shí)數(shù),滿足等式,其中向量叫做直線的方向向量。在上取,則式可化為或當(dāng)時,點(diǎn)是線段的中點(diǎn),此時和都叫空間直線的向量參數(shù)方程,是線段的中點(diǎn)公式3向量與平面平行:已知平面和向量,作,如果直線平行于或在內(nèi),那么我們說向量平行于平面,記作:通常我們把平行于同一平面的向量,叫做共面向量說明:空間任意的兩向量都是共面的4共面向量定理:如果兩個向量不共線,與向量共面的充要條件是存在實(shí)數(shù)使推論:空間一點(diǎn)位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對,使或?qū)臻g任一點(diǎn),有上面式叫做平面的向量表達(dá)式(三)例題分析:例1已知三點(diǎn)不
9、共線,對平面外任一點(diǎn),滿足條件,試判斷:點(diǎn)與是否一定共面?解:由題意:,即,所以,點(diǎn)與共面說明:在用共面向量定理及其推論的充要條件進(jìn)行向量共面判斷的時候,首先要選擇恰當(dāng)?shù)某湟獥l件形式,然后對照形式將已知條件進(jìn)行轉(zhuǎn)化運(yùn)算【練習(xí)】:對空間任一點(diǎn)和不共線的三點(diǎn),問滿足向量式 (其中)的四點(diǎn)是否共面?解:,點(diǎn)與點(diǎn)共面例2已知,從平面外一點(diǎn)引向量,(1)求證:四點(diǎn)共面;(2)平面平面解:(1)四邊形是平行四邊形,共面;(2),又,所以,平面平面五、課堂練習(xí):課本第96頁練習(xí)第1、2、3題六、課堂小結(jié):1共線向量定理和共面向量定理及其推論;2空間直線、平面的向量參數(shù)方程和線段中點(diǎn)向量公式七、作業(yè):1已知兩
10、個非零向量不共線,如果,求證:共面2已知,若,求實(shí)數(shù)的值。3如圖,分別為正方體的棱的中點(diǎn),求證:(1)四點(diǎn)共面;(2)平面平面4已知分別是空間四邊形邊的中點(diǎn),(1)用向量法證明:四點(diǎn)共面;(2)用向量法證明:平面3.1.3空間向量的數(shù)量積(1)教學(xué)目標(biāo):1掌握空間向量夾角和模的概念及表示方法;2掌握兩個向量的數(shù)量積的計算方法,并能利用兩個向量的數(shù)量積解決立體幾何中的一些簡單問題。教學(xué)重、難點(diǎn):空間數(shù)量積的計算方法、幾何意義、立體幾何問題的轉(zhuǎn)化。 教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神教學(xué)過程學(xué)生探究過程:(一)復(fù)習(xí)
11、:空間向量基本定理及其推論;(二)新課講解:1空間向量的夾角及其表示:已知兩非零向量,在空間任取一點(diǎn),作,則叫做向量與的夾角,記作;且規(guī)定,顯然有;若,則稱與互相垂直,記作:;2向量的模:設(shè),則有向線段的長度叫做向量的長度或模,記作:;3向量的數(shù)量積:已知向量,則叫做的數(shù)量積,記作,即已知向量和軸,是上與同方向的單位向量,作點(diǎn)在上的射影,作點(diǎn)在上的射影,則叫做向量在軸上或在上的正射影;可以證明的長度4空間向量數(shù)量積的性質(zhì): (1)(2)(3)5空間向量數(shù)量積運(yùn)算律:(1)(2)(交換律)(3)(分配律)(三)例題分析:例1用向量方法證明:直線和平面垂直的判定定理。已知:是平面內(nèi)的兩條相交直線,
12、直線與平面的交點(diǎn)為,且求證:證明:在內(nèi)作不與重合的任一直線,在上取非零向量,相交,向量不平行,由共面定理可知,存在唯一有序?qū)崝?shù)對,使,又,所以,直線垂直于平面內(nèi)的任意一條直線,即得例2已知空間四邊形中,求證:證明:(法一) (法二)選取一組基底,設(shè),即,同理:,即說明:用向量解幾何題的一般方法:把線段或角度轉(zhuǎn)化為向量表示,并用已知向量表示未知向量,然后通過向量運(yùn)算取計算或證明。例3如圖,在空間四邊形中,求與的夾角的余弦值。解:, ,所以,與的夾角的余弦值為說明:由圖形知向量的夾角時易出錯,如易錯寫成,切記!五鞏固練習(xí):課本第99頁練習(xí)第1、2、3題。六教學(xué)反思:空間向量數(shù)量積的概念和性質(zhì)。七作
13、業(yè):課本第106頁第3、4題補(bǔ)充:1已知向量,向量與的夾角都是,且,試求:(1);(2);(3)向量的數(shù)量積(2)一、教學(xué)目標(biāo):向量的數(shù)量積運(yùn)算利用向量的數(shù)量積運(yùn)算判定垂直、求模、求角二、教學(xué)重點(diǎn):向量的數(shù)量積運(yùn)算利用向量的數(shù)量積運(yùn)算判定垂直、求模、求角三、教學(xué)方法:練習(xí)法,糾錯法,歸納法四、教學(xué)過程:考點(diǎn)一:向量的數(shù)量積運(yùn)算(一)、知識要點(diǎn):1)定義: 設(shè)=,則 (的范圍為 )設(shè),則 。注:不能寫成,或 的結(jié)果為一個數(shù)值。2)投影:在方向上的投影為 。3)向量數(shù)量積運(yùn)算律: 注:沒有結(jié)合律二)例題講練1、下列命題:若,則,中至少一個為若且,則中正確有個數(shù)為 ( )A. 0個 B. 1個 C.
14、 2個 D. 3個2、已知中,A,B,C所對的邊為a,b,c,且a=3,b=1,C=30,則= 。3、若,滿足,且,則= 。4、已知,且與的夾角為,則在上的投影為 ??键c(diǎn)二:向量數(shù)量積性質(zhì)應(yīng)用一)、知識要點(diǎn): (用于判定垂直問題)(用于求模運(yùn)算問題)(用于求角運(yùn)算問題)二)例題講練1、已知,且與的夾角為,求當(dāng)m為何值時2、已知,則 。3、已知和是非零向量,且=,求與的夾角4、已知,且和不共線,求使與的夾角是銳角時的取值范圍鞏固練習(xí)1、已知和是兩個單位向量,夾角為,則()等于( )A.-8 B. C. D.82、已知和是兩個單位向量,夾角為,則下面向量中與垂直的是( ) A. B. C. D.
15、3、在中,設(shè),若,則( ) 直角三角形 銳角三角形 鈍角三角形 無法判定4、已知和是非零向量,且與垂直,與垂直,求與的夾角。5、已知、是非零的單位向量,且+=,求證:為正三角形。3.1.5空間向量運(yùn)算的坐標(biāo)表示課題向量的坐標(biāo) 教學(xué)目的要求1理解空間向量與有序數(shù)組之間的1-1對應(yīng)關(guān)系 2掌握投影定理、分向量及方向余弦的坐標(biāo)表示主要內(nèi)容與時間分配1投影與投影定理 25分鐘2分向量與向量的坐標(biāo) 30分鐘3模與方向余弦的坐標(biāo)表示 35分鐘重點(diǎn)難點(diǎn)1投影定理2分向量3方向余弦的坐標(biāo)表示教學(xué)方法和手段啟發(fā)式教學(xué)法,使用電子教案一、向量在軸上的投影1幾個概念(1) 軸上有向線段的值:設(shè)有一軸,是軸上的有向線
16、段,如果數(shù)滿足,且當(dāng)與軸同向時是正的,當(dāng)與軸反向時是負(fù)的,那么數(shù)叫做軸上有向線段的值,記做AB,即。設(shè)e是與軸同方向的單位向量,則(2) 設(shè)A、B、C是u軸上任意三點(diǎn),不論三點(diǎn)的相互位置如何,總有(3) 兩向量夾角的概念:設(shè)有兩個非零向量和b,任取空間一點(diǎn)O,作,規(guī)定不超過的稱為向量和b的夾角,記為(4) 空間一點(diǎn)A在軸上的投影:通過點(diǎn)A作軸的垂直平面,該平面與軸的交點(diǎn)叫做點(diǎn)A在軸上的投影。(5) 向量在軸上的投影:設(shè)已知向量的起點(diǎn)A和終點(diǎn)B在軸上的投影分別為點(diǎn)和,那么軸上的有向線段的值叫做向量在軸上的投影,記做。2投影定理性質(zhì)1:向量在軸上的投影等于向量的模乘以軸與向量的夾角的余弦:性質(zhì)2:
17、兩個向量的和在軸上的投影等于兩個向量在該軸上的投影的和,即 性質(zhì)3:向量與數(shù)的乘法在軸上的投影等于向量在軸上的投影與數(shù)的乘法。即二、向量在坐標(biāo)系上的分向量與向量的坐標(biāo)1向量在坐標(biāo)系上的分向量與向量的坐標(biāo)通過坐標(biāo)法,使平面上或空間的點(diǎn)與有序數(shù)組之間建立了一一對應(yīng)關(guān)系,同樣地,為了溝通數(shù)與向量的研究,需要建立向量與有序數(shù)之間的對應(yīng)關(guān)系。設(shè)a =是以為起點(diǎn)、為終點(diǎn)的向量,i、j、k分別表示 圖75沿x,y,z軸正向的單位向量,并稱它們?yōu)檫@一坐標(biāo)系的基本單位向量,由圖75,并應(yīng)用向量的加法規(guī)則知:i + j+k或a = ax i + ayj + azk上式稱為向量a按基本單位向量的分解式。有序數(shù)組ax
18、、ay、az與向量a一一對應(yīng),向量a在三條坐標(biāo)軸上的投影ax、ay、az就叫做向量a的坐標(biāo),并記為 a ax,ay,az。上式叫做向量a的坐標(biāo)表示式。于是,起點(diǎn)為終點(diǎn)為的向量可以表示為特別地,點(diǎn)對于原點(diǎn)O的向徑注意:向量在坐標(biāo)軸上的分向量與向量在坐標(biāo)軸上的投影有本質(zhì)區(qū)別。向量a在坐標(biāo)軸上的投影是三個數(shù)ax、ay、az,向量a在坐標(biāo)軸上的分向量是三個向量ax i 、 ayj 、 azk.2向量運(yùn)算的坐標(biāo)表示設(shè),即,則(1) 加法: 減法: 乘數(shù): 或 平行:若a0時,向量相當(dāng)于,即也相當(dāng)于向量的對應(yīng)坐標(biāo)成比例即三、向量的模與方向余弦的坐標(biāo)表示式設(shè),可以用它與三個坐標(biāo)軸的夾角(均大于等于0,小于等
19、于)來表示它的方向,稱為非零向量a的方向角,見圖76,其余弦表示形式稱為方向余弦。圖761 模2 方向余弦由性質(zhì)1知,當(dāng)時,有 任意向量的方向余弦有性質(zhì): 與非零向量a同方向的單位向量為:3 例子:已知兩點(diǎn)M1(2,2,)、M2(1,3,0),計算向量的模、方向余弦、方向角以及與同向的單位向量。解:1-2,3-2,0-=-1,1,-,設(shè)為與同向的單位向量,由于即得3.2立體幾何中的向量方法空間距離利用向量方法求解空間距離問題,可以回避此類問題中大量的作圖、證明等步驟,而轉(zhuǎn)化為向量間的計算問題例如圖,已知正方形ABCD的邊長為4,E、F分別是AB、AD的中點(diǎn),GC平面ABCD,且GC2,求點(diǎn)B到
20、平面EFG的距離分析:由題設(shè)可知CG、CB、CD兩兩互相垂直,可以由此建立空間直角坐標(biāo)系用向量法求解,就是求出過B且垂直于平面EFG的向量,它的長即為點(diǎn)B到平面EFG的距離解:如圖,設(shè)4i,4j,2k,以i、j、k為坐標(biāo)向量建立空間直角坐標(biāo)系Cxyz由題設(shè)C(0,0,0),A(4,4,0),B(0,4,0),D(4,0,0),E(2,4,0),F(xiàn)(4,2,0),G(0,0,2), ,設(shè)平面EFG,M為垂足,則M、G、E、F四點(diǎn)共面,由共面向量定理知,存在實(shí)數(shù)a、b、c,使得,(2a+4b,2b4c,2c)由平面EFG,得,于是,整理得:,解得(2a+4b,2b4c,2c)故點(diǎn)B到平面EFG的距
21、離為說明:用向量法求點(diǎn)到平面的距離,常常不必作出垂線段,只需利用垂足在平面內(nèi)、共面向量定理、兩個向量垂直的充要條件解出垂線段對應(yīng)的向量就可以了例2已知正方體ABCD的棱長為1,求直線與AC的距離分析:設(shè)異面直線、AC的公垂線是直線l,則線段在直線l上的射影就是兩異面直線的公垂線段,所以此題可以利用向量的數(shù)量積的幾何意義求解解:如圖,設(shè)i,j,k,以i、j、k為坐標(biāo)向量建立空間直角坐標(biāo)系xyz,則有,設(shè)n是直線l方向上的單位向量,則n,n,解得或取n,則向量在直線l上的投影為n由兩個向量的數(shù)量積的幾何意義知,直線與AC的距離為向量的內(nèi)積與二面角的計算 在高等代數(shù)與解析幾何課程第一章向量代數(shù)的教學(xué)
22、中,講到幾何空間的內(nèi)積時,有一個例題(見1,p53)要求證明如下的公式: (1)其中點(diǎn)O是二面角P-MN-Q的棱MN上的點(diǎn),OA、OB分別在平面P和平面Q內(nèi)。, 。為二面角P-MN-Q(見圖1)。圖1 公式(1)可以利用向量的內(nèi)積來加以證明:以Q為坐標(biāo)平面,直線MN為y軸,如圖1建立直角坐標(biāo)系。 記xOz平面與平面P的交線為射線OD,則,得,。分別沿射線OA、OB的方向上作單位向量,則。由計算知,的坐標(biāo)分別為,于是,。公式(1)在立體幾何計算二面角的平面角時是有用的。我們來介紹如下的兩個應(yīng)用。例1立方體ABCD-A1B1C1D1的邊長為1,E、F、G、H、I分別為A1D1、A1A、A1B1、B
23、1C1、B1B的中點(diǎn)。 求面EFG和面GHI的夾角的大?。ㄓ梅慈呛瘮?shù)表示)。解 由于圖2中所畫的兩平面EFG和GHI只有一個公共點(diǎn),沒有交線,所以我們可以將該立方體沿AB方向平移1個單位。這樣就使平面EFG平移至平面。而就是二面角G-IH-(見圖3)。利用公式(1),只要知道了,和的大小,我們就能求出。圖2由已知條件,和均為等邊三角形,所以,而。因此,圖3,即。解得, 。當(dāng)然,在建立了直角坐標(biāo)系之后,通過計算向量的外積可計算出兩平面的法向量,利用法向量同樣也可算出夾角來。例2計算正十二面體的兩個相鄰面的夾角的大小。解 我們知道正十二面體的每個面都是大小相同的正五邊形,且在正十二面體的每個頂點(diǎn)
24、上均有3個面圍繞。設(shè)P和Q是兩個相鄰的面,MN是它們的交線(如圖4),則公式(1)中的,分別為:, , ,因此它們均為正五邊形的內(nèi)角。所以。圖4所以,由公式(1)知,或。因此,或。 如果不使用公式(1),要求出例2中的夾角的大小在計算上要復(fù)雜很多。利用例2的結(jié)果,我們可以容易地計算出單位棱長正十二面體的體積V。設(shè)單位棱長正十二面體的中心為O,則該十二面體可以切割成十二個全等的正五棱錐,每個五棱錐以該多面體的一個面為底面、以O(shè)為其頂點(diǎn)。設(shè)該正五棱錐為,從而可知:。再設(shè)的底面積為S、高為h,設(shè)為單位邊長正五邊形(即的底)的中心,A、B為該五邊形的兩個相鄰的頂點(diǎn),H為AB的中點(diǎn),則, , 。仍設(shè)為正十二面體兩相鄰面的夾角,則。所以。但是,從而 ,或
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- MicrosoftPowerPoint演示文稿(2)(教育精品)
- 網(wǎng)絡(luò)營銷發(fā)展趨勢x
- 東海岸整合推廣攻略
- 留置引流管的目的及注意事項(xiàng)PPT通用課件
- 斷面--盆腔男課件
- 第二章、半導(dǎo)體三極管分解
- 使用筆記本電腦出現(xiàn)的問題解答
- (精品)寫作我對生活的感悟
- 巧奧數(shù)巧算面積課件
- 酒店前廳管理之禮賓部
- 化學(xué)ppt課件《物質(zhì)的量在化學(xué)方程式計算中的應(yīng)用》-人教版
- 樊登讀書會第22本書-《如何培養(yǎng)孩子的社會能力》
- 某彩虹氣霧劑制造公司內(nèi)外部環(huán)境分析
- 某度假村策略思考及廣告執(zhí)行計劃方案
- 色彩的魅力說課稿課件