《(全國(guó)120套)2013年中考數(shù)學(xué)試卷分類匯編 角平分線》由會(huì)員分享,可在線閱讀,更多相關(guān)《(全國(guó)120套)2013年中考數(shù)學(xué)試卷分類匯編 角平分線(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、角平分線
1、(2013?雅安)如圖,AB∥CD,AD平分∠BAC,且∠C=80°,則∠D的度數(shù)為( )
A.
50°
B.
60°
C.
70°
D.
100°
考點(diǎn):
平行線的性質(zhì);角平分線的定義.
分析:
根據(jù)角平分線的定義可得∠BAD=∠CAD,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAD=∠D,從而得到∠CAD=∠D,再利用三角形的內(nèi)角和定理列式計(jì)算即可得解.
解答:
解:∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵AB∥CD,
∴∠BAD=∠D,
∴∠CAD=∠D,
在△ACD中,∠C+∠D+∠CAD=180°,
∴80°+
2、∠D+∠D=180°,
解得∠D=50°.
故選A.
點(diǎn)評(píng):
本題考查了平行線的性質(zhì),角平分線的定義,三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
2、(2013?遂寧)如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( ?。?
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.
1
B.
2
C.
3
D.
4
考
3、點(diǎn):
角平分線的性質(zhì);線段垂直平分線的性質(zhì);作圖—基本作圖.
分析:
①根據(jù)作圖的過(guò)程可以判定AD是∠BAC的角平分線;
②利用角平分線的定義可以推知∠CAD=30°,則由直角三角形的性質(zhì)來(lái)求∠ADC的度數(shù);
③利用等角對(duì)等邊可以證得△ADB的等腰三角形,由等腰三角形的“三合一”的性質(zhì)可以證明點(diǎn)D在AB的中垂線上;
④利用30度角所對(duì)的直角邊是斜邊的一半、三角形的面積計(jì)算公式來(lái)求兩個(gè)三角形的面積之比.
解答:
解:①根據(jù)作圖的過(guò)程可知,AD是∠BAC的平分線.
故①正確;
②如圖,∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC
4、的平分線,
∴∠1=∠2=∠CAB=30°,
∴∠3=90°﹣∠2=60°,即∠ADC=60°.
故②正確;
③∵∠1=∠B=30°,
∴AD=BD,
∴點(diǎn)D在AB的中垂線上.
故③正確;
④∵如圖,在直角△ACD中,∠2=30°,
∴CD=AD,
∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.
∴S△ABC=AC?BC=AC?AD=AC?AD,
∴S△DAC:S△ABC=AC?AD: AC?AD=1:3.
故④正確.
綜上所述,正確的結(jié)論是:①②③④,共有4個(gè).
故選D.
點(diǎn)評(píng):
本題考查了角平分線的性質(zhì)、線段垂直平分
5、線的性質(zhì)以及作圖﹣基本作圖.解題時(shí),需要熟悉等腰三角形的判定與性質(zhì).
3、(2013?咸寧)如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交x軸于點(diǎn)M,交y軸于點(diǎn)N,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧在第二象限交于點(diǎn)P.若點(diǎn)P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為( ?。?
A.
a=b
B.
2a+b=﹣1
C.
2a﹣b=1
D.
2a+b=1
考點(diǎn):
作圖—基本作圖;坐標(biāo)與圖形性質(zhì);角平分線的性質(zhì).
分析:
根據(jù)作圖過(guò)程可得P在第二象限角平分線上,有角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等可得|2a
6、|=|b+1|,再根據(jù)P點(diǎn)所在象限可得橫縱坐標(biāo)的和為0,進(jìn)而得到a與b的數(shù)量關(guān)系.
解答:
解:根據(jù)作圖方法可得點(diǎn)P在第二象限角平分線上,
則P點(diǎn)橫縱坐標(biāo)的和為0,
故2a+b+1=0,
整理得:2a+b=﹣1,
故選:B.
點(diǎn)評(píng):
此題主要考查了每個(gè)象限內(nèi)點(diǎn)的坐標(biāo)特點(diǎn),以及角平分線的性質(zhì),關(guān)鍵是掌握各象限角平分線上的點(diǎn)的坐標(biāo)特點(diǎn)|橫坐標(biāo)|=|縱坐標(biāo)|.
4、(2013?曲靖)如圖,直線AB、CD相交于點(diǎn)O,若∠BOD=40°,OA平分∠COE,則∠AOE= 40°?。?
考點(diǎn):
對(duì)頂角、鄰補(bǔ)角;角平分線的定義.
分析:
根據(jù)對(duì)頂角相等求出∠AOC,再根據(jù)角
7、平分線的定義解答.
解答:
解:∵∠BOD=40°,
∴∠AOC=∠BOD=40°,
∵OA平分∠COE,
∴∠AOE=∠AOC=40°.
故答案為:40°.
點(diǎn)評(píng):
本題考查了對(duì)頂角相等的性質(zhì),角平分線的定義,是基礎(chǔ)題,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
5、(2013成都市)如圖,,若AB∥CD,CB平分,則______度.
答案:60°
解析:∠ACD=2∠BCD=2∠ABC=60°
6、(13年安徽省14分、23壓軸題)我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”。如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”。其中∠B=∠C。
8、
(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個(gè)頂點(diǎn)引一條直線將四邊形ABCD分割成一個(gè)等腰梯形和一個(gè)三角形或分割成一個(gè)等腰三角形和一個(gè)梯形(畫(huà)出一種示意圖即可)。
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:
(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請(qǐng)問(wèn)當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(shí)(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時(shí),情況又將如何?寫(xiě)出你的結(jié)論(不必說(shuō)明理由)
9、
7、(2013?湘西州)如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的長(zhǎng);
(2)求△ADB的面積.
考點(diǎn):
角平分線的性質(zhì);勾股定理
分析:
(1)根據(jù)角平分線性質(zhì)得出CD=DE,代入求出即可;
(2)利用勾股定理求出AB的長(zhǎng),然后計(jì)算△ADB的面積.
解答:
解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=DE,
∵CD=3,
∴DE=3;
(2)在Rt△ABC中,由勾股定理得:AB===10,
∴△ADB的面積為S△ADB=AB?DE=
10、×10×3=15.
點(diǎn)評(píng):
本題考查了角平分線性質(zhì)和勾股定理的運(yùn)用,注意:角平分線上的點(diǎn)到角兩邊的距離相等.
8、(2013?溫州)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng).
考點(diǎn):
全等三角形的判定與性質(zhì);角平分線的性質(zhì);含30度角的直角三角形.
分析:
(1)根據(jù)角平分線性質(zhì)求出CD=DE,根據(jù)HL定理求出另三角形全等即可;
(2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質(zhì)求出即可.
解答:
(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°,
∵在Rt△ACD和Rt△AED中
∴Rt△ACD≌Rt△AED(HL);
(2)解:∵DC=DE=1,DE⊥AB,
∴∠DEB=90°,
∵∠B=30°,
∴BD=2DE=2.
點(diǎn)評(píng):
本題考查了全等三角形的判定,角平分線性質(zhì),含30度角的直角三角形性質(zhì)的應(yīng)用,注意:角平分線上的點(diǎn)到角兩邊的距離相等.