《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 考點(diǎn)集訓(xùn)(三十四)第34講 數(shù)列求和 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 考點(diǎn)集訓(xùn)(三十四)第34講 數(shù)列求和 新人教A版(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、考點(diǎn)集訓(xùn)(三十四)第34講數(shù)列求和對(duì)應(yīng)學(xué)生用書p237A組題1數(shù)列an的通項(xiàng)公式為an(1)n1(4n3),則它的前100項(xiàng)之和S100等于()A200B200C400D400解析S100(413)(423)(41003)4(12)(34)(99100)4(50)200.答案B2數(shù)列中,a12,且anan12(n2),則數(shù)列前2021項(xiàng)和為()A.B.C.D.解析anan12(n2),aa2n,整理得:n,n2,又a12,可得:2,則數(shù)列前2021項(xiàng)和為:S202122.故選B.答案B3已知數(shù)列an中,a12,2,則數(shù)列an的前n項(xiàng)和Sn()A32n3n3B52n3n5C32n5n3D52n5
2、n5解析因?yàn)?,所以an12an3,即an132(an3),則數(shù)列an3是首項(xiàng)為a135,公比為2的等比數(shù)列,其通項(xiàng)公式為an352n1,所以an52n13,分組求和可得數(shù)列an的前n項(xiàng)和Sn52n3n5.答案B4記Sn為數(shù)列an的前n項(xiàng)和,已知a1,2n,則S100()A2B2C2D2解析根據(jù)題意,由2n,得2n,則2n1,2n2,21,將各式相加得21222n12n2,又a1,所以ann,因此S10012100,則S1001299100,將兩式相減得S100100,所以S10021002.答案D5已知公差不為零的等差數(shù)列an中,a11,且a2,a5,a14成等比數(shù)列,an的前n項(xiàng)和為Sn,
3、bn(1)nSn.則數(shù)列bn的前2n項(xiàng)和T2n_解析由題意,a11,an是等差數(shù)列,a2,a5,a14成等比數(shù)列,可得:(1d)(113d)(14d)2,解得:d2,所以ana1(n1)d2n1,Snna1dn2.由bn(1)nSn(1)nn2,所以bn的前2n項(xiàng)和T2n(1222)(3242)(2n1)2(2n)2374n1n(2n1)答案n(2n1)6已知數(shù)列an滿足a11,a22,an2an1(1)n,那么S100的值為_(kāi)解析當(dāng)n為奇數(shù)時(shí),an2an0,所以an1;當(dāng)n為偶數(shù)時(shí),an2an2,所以ann;故an可是S100502600.答案26007已知等差數(shù)列an的公差為2,前n項(xiàng)和為
4、Sn,且S1,S2,S4成等比數(shù)列(1)求數(shù)列an的通項(xiàng)公式;(2)令bn(1)n1,求數(shù)列bn的前n項(xiàng)和Tn.解析 (1)因?yàn)镾1a1,S22a122a12,S44a124a112,由題意得(2a12)2a1(4a112),解得a11,所以an2n1.(2)bn(1)n1(1)n1(1)n1.當(dāng)n為偶數(shù)時(shí),Tn1.當(dāng)n為奇數(shù)時(shí),Tn1.所以Tn8已知數(shù)列an和bn滿足a1a2a3an2bn(nN*),若an為等比數(shù)列,且a12,b33b2.(1)求an和bn;(2)設(shè)cn(nN*),記數(shù)列cn的前n項(xiàng)和為Sn,求Sn.解析 (1)設(shè)等比數(shù)列an的公比為q,數(shù)列an和bn滿足a1a2a3an2
5、bn(nN*),a12,a12b1,a1a22b2,a1a2a32b3,b11,a22b2b12q0,a32b3b22q2,又b33b2,232q2,解得q2,q2(舍)an2n.2bna1a2a3an2222n2,bn.(2)cn2,數(shù)列cn的前n項(xiàng)和為Sn22121.B組題1已知函數(shù)fn2cos,且anff,則a1a2a100()A100B0C100D10200解析a1122,a22232,a33242,a44252,所以a1a3a995050,a2a4a100(23100101)5150,所以a1a2a10050505150100.答案A2已知數(shù)列an與bn的前n項(xiàng)和分別為Sn,Tn,且
6、an0,6Sna3an,nN*,bn,若nN*,kTn恒成立,則k的最小值是()A.B.C49D.解析當(dāng)n1時(shí),6a1a3a1,解得a13或a10.由an0,得a13.由6Sna3an,得6Sn1a3an1.兩式相減得6an1aa3an13an.所以(an1an)(an1an3)0.因?yàn)閍n0,所以an1an0,an1an3.即數(shù)列an是以3為首項(xiàng),3為公差的等差數(shù)列,所以an33(n1)3n.所以bn.所以TnTn恒成立,只需k.故選B.答案B3已知正項(xiàng)數(shù)列an的前n項(xiàng)和為Sn,nN*,2Snaan.令bn,設(shè)bn的前n項(xiàng)和為Tn,則在T1,T2,T3,T100中有理數(shù)的個(gè)數(shù)為_(kāi)解析2Sna
7、an,2Sn1aan1,得2an1aan1aan,aaan1an0,(an1an)(an1an1)0.又an為正項(xiàng)數(shù)列,an1an10,即an1an1.在2Snaan中,令n1,可得a11.數(shù)列an是以1為首項(xiàng),1為公差的等差數(shù)列ann,bn,Tn11,要使Tn為有理數(shù),只需為有理數(shù),令n1t2,1n100,n3,8,15,24,35,48,63,80,99,共9個(gè)數(shù)T1,T2,T3,T100中有理數(shù)的個(gè)數(shù)為9.答案94已知數(shù)列an中,a11,a23,若an22an1an0對(duì)任意nN*都成立,則數(shù)列an的前n項(xiàng)和Sn_解析a11,a23,an22an1an0對(duì)任意nN*都成立,可得:an2an
8、1(an1an),a2a14.則數(shù)列an1an是等比數(shù)列,首項(xiàng)為4,公比為1.an1an4(1)n1.n2k1時(shí),a2k1a2k4(1)2k14,SnS2k1(a2k1a2k)a1(a2a3)(a2ka2k1)(a2ka2k1)1(4)54k32n.n2k時(shí),a2k1a2k4(1)2k24.Sn(a1a2)(a3a4)(a2k1a2k)4k2n,Sn答案5已知Sn是數(shù)列an的前n項(xiàng)和,a12,且4Snanan1,在數(shù)列bn中,b1,且bn1,nN*.(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)Bn,cn(nN*),求cn的前n項(xiàng)和Tn.解析 (1)當(dāng)n1時(shí),由題意,得a24.當(dāng)n2時(shí),4Snanan1,4Sn1an1an,兩式相減,得4anan(an1an1)an0,an1an14,an的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是分別以4為公差的等差數(shù)列當(dāng)n2k1,kN*時(shí),ana2k14k22n;當(dāng)n2k,kN*時(shí),ana2k4k2n.an2n(nN*)(2)由已知得,即,.bn(n2),n1時(shí)也適合,bn(nN*),Bnn1,cn.Tn,Tn,得Tn11,Tn2.9