《2020版高考數(shù)學二輪復習 專題限時集訓13 導數(shù)的簡單應用 理》由會員分享,可在線閱讀,更多相關《2020版高考數(shù)學二輪復習 專題限時集訓13 導數(shù)的簡單應用 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題限時集訓(十三)導數(shù)的簡單應用專題通關練(建議用時:30分鐘)1(2019深圳二模)已知函數(shù)f(x)ax2(1a)x是奇函數(shù),則曲線yf(x)在x1處的切線的傾斜角為()A.B.C. D.B函數(shù)f(x)ax2(1a)x是奇函數(shù),可得f(x)f(x),可得a0,f(x)x,f(x)1,即有曲線yf(x)在x1處的切線斜率為k121,可得切線的傾斜角為,故選B.2若x是函數(shù)f(x)(x22ax)ex的極值點,則函數(shù)yf(x)的最小值為()A(22)eB0C(22)eDeCf(x)(x22ax)ex,f(x)x2(22a)x2aex,由題意可知f()0,即a1.f(x)(x22x)ex.f(x)
2、(x22)ex,由f(x)0得x.又f()(22)e,f()(22)e,且f()f()故選C.3易錯題(2019長春二模)已知f(x)是函數(shù)f(x)的導函數(shù),f(1)e,xR,2f(x)f(x)0,則不等式f(x)e2x1的解集為()A(,1)B(1,)C(,e)D(e,)B令g(x),則g(x),2f(x)f(x)0,g(x)0,g(x)遞減,不等式f(x)e2x1g(x)g(1)x1,故選B.4易錯題若函數(shù)f(x)x3x2在區(qū)間(a,a5)上存在最小值,則實數(shù)a的取值范圍是()A5,0)B(5,0)C3,0)D(3,0)C由題意,f(x)x22xx(x2),故f(x)在(,2),(0,)上
3、是增函數(shù),在(2,0)上是減函數(shù),作出其圖象如圖所示令x3x2得,x0或x3,則結(jié)合圖象可知解得a3,0),故選C.5已知函數(shù)f(x)在R上可導,且f(x)4xx3f(1)2f(0),則f(x)dx_.f(x)4xx3f(1)2f(0),f(x)43x2f(1),令x1得f(1)43f(1),即f(1)1.令x0得f(0)4.f(x)4xx38.f(x)dx(4xx38)dx.6已知函數(shù)f(x)x3mx24x3在區(qū)間1,2上是增函數(shù),則實數(shù)m的取值范圍為_(,4由函數(shù)f(x)x3mx24x3,可得f(x)x2mx4,由函數(shù)f(x)x3mx24x3在區(qū)間1,2上是增函數(shù),可得x2mx40在區(qū)間1
4、,2上恒成立,可得mx,又x24,當且僅當x2時取等號,可得m4.能力提升練(建議用時:15分鐘)7已知常數(shù)a0,f(x)aln x2x.(1)當a4時,求f(x)的極值;(2)當f(x)的最小值不小于a時,求實數(shù)a的取值范圍解(1)由已知得f(x)的定義域為(0,),f(x)2.當a4時,f(x).所以當0x2時,f(x)0,即f(x)單調(diào)遞減;當x2時,f(x)0,即f(x)單調(diào)遞增所以f(x)只有極小值,且當x2時,f(x)取得極小值f(2)44ln 2.所以當a4時,f(x)只有極小值44ln 2.(2)因為f(x),所以當a0,x(0,)時,f(x)0,即f(x)在x(0,)上單調(diào)遞
5、增,沒有最小值;當a0時,由f(x)0得,x,所以f(x)在上單調(diào)遞增;由f(x)0得,x,所以f(x)在上單調(diào)遞減所以當a0時,f(x)的最小值為falna.根據(jù)題意得falnaa,即aln(a)ln 20.因為a0,所以ln(a)ln 20,解得a2,所以實數(shù)a的取值范圍是2,0)8(2019武漢模擬)已知函數(shù)f(x)a(xln x)(1)當a0時,試求f(x)的單調(diào)區(qū)間;(2)若f(x)在(0,1)內(nèi)有極值,試求a的取值范圍解(1)函數(shù)f(x)的定義域為(0,)f(x)a,.當a0時,對于x(0,),exax0恒成立,所以由f(x)0,得x1;由f(x)0,得0x1.所以f(x)的單調(diào)增
6、區(qū)間為(1,),單調(diào)減區(qū)間為(0,1)(2)若f(x)在(0,1)內(nèi)有極值,則f(x)0在(0,1)內(nèi)有解令f(x)0,即exax0,即a.設g(x),x(0,1),所以g(x),當x(0,1)時,g(x)0恒成立,所以g(x)單調(diào)遞減又因為g(1)e,又當x0時,g(x),即g(x)在(0,1)上的值域為(e,),所以當ae時,f(x)0有解設H(x)exax,設H(x)exa0,x(0,1),所以H(x)在(0,1)上單調(diào)遞減因為H(0)10,H(1)ea0,所以H(x)exax0在(0,1)上有唯一解x0.當x變化時,H(x),f(x),f(x)變化情況如表所示:x(0,x0)x0(x0
7、,1)H(x)0f(x)0f(x)極小值所以當ae時,f(x)在(0,1)內(nèi)有極值且唯一當ae時,當x(0,1)時,f(x)0恒成立,f(x)單調(diào)遞減,不成立綜上,a的取值范圍為(e,)內(nèi)容押題依據(jù)利用導數(shù)討論函數(shù)的單調(diào)性、極值、不等式的證明函數(shù)的單調(diào)性、極值與不等式交匯是近幾年高考的熱點,考查靈活應用導數(shù)工具、數(shù)形結(jié)合思想及分類討論思想解題的能力,考查邏輯推理及數(shù)學運算的素養(yǎng)【押題】設函數(shù)f(x)xaxln x(aR)(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)的極大值點為x1,證明:f(x)exx2.解(1)f(x)的定義域為(0,),f(x)1aln xa,當a0時,f(x)x,
8、則函數(shù)f(x)在區(qū)間(0,)上單調(diào)遞增; 當a0時,由f(x)0得xe,由f(x)0得0xe,所以f(x)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;當a0時,由f(x)0得0xe,由f(x)0得xe,所以函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減綜上所述,當a0時,函數(shù)f(x)在區(qū)間(0,)上單調(diào)遞增;當a0時,函數(shù)f(x)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;當a0時,函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減(2)由(1)知a0且e1,解得a1,f(x)xxln x要證f(x)exx2,即證xxln xexx2,即證1ln xx.令f(x)ln xx1(x0),則f(x)1.令g(x)xex(x0),易知函數(shù)g(x)在區(qū)間(0,)上單調(diào)遞增而g(1)10,g(0)10,所以在區(qū)間(0,)上存在唯一的實數(shù)x0,使得g(x0)x0e0,即x0e,且當x(0,x0)時g(x)0,當x(x0,)時g(x)0,故f(x)在(0,x0)上單調(diào)遞減,在(x0,)上單調(diào)遞增所以F(x)minF(x0)ln x0x01.又ex0,所以F(x)minln x0x01x01x010.所以f(x)F(x0)0成立,即f(x)exx2成立- 7 -