《(湖南專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)(九)配套作業(yè) 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《(湖南專用)2020高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)(九)配套作業(yè) 理(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題限時(shí)集訓(xùn)(九)第9講數(shù)列的概念與表示、等差數(shù)列與等比數(shù)列(時(shí)間:45分鐘) 1已知an為等差數(shù)列,且a72a41,a30,則公差d()A2 BC. D22在等比數(shù)列an中,a11,公比|q|1.若ama1a2a3a4a5,則m()A9 B10C11 D123設(shè)Sn為等差數(shù)列an的前n項(xiàng)和,若a21,a45,則S5等于()A7 B15C30 D314已知各項(xiàng)均為正數(shù)的等比數(shù)列an,滿足a1a916,則a2a5a8的值為()A16 B32C48 D645公差不為零的等差數(shù)列an中,a2,a3,a6成等比數(shù)列,則其公比為()A1 B2C3 D46等差數(shù)列an中,a5a64,則log2(2a12a
2、22a10)()A10 B20C40 D2log257已知正項(xiàng)等比數(shù)列an滿足a7a62a5,若存在兩項(xiàng)am,an,使得4a1,則的最小值為()A. B1 C. D.8設(shè)等比數(shù)列an的前n項(xiàng)和為Sn,若a33S21,a23S11,則公比q()A1 B2C4 D89已知an是公差為d的等差數(shù)列,若3a6a3a4a512,則d_10已知等比數(shù)列an的首項(xiàng)為2,公比為2,則_11數(shù)列an中,a12,當(dāng)n為奇數(shù)時(shí),an1an2;當(dāng)n為偶數(shù)時(shí),an12an則a9_12已知等比數(shù)列an的前n項(xiàng)和為Sn,a11,且S1,2S2,3S3成等差數(shù)列(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bnann,求數(shù)列bn的前n
3、項(xiàng)和Tn.13等差數(shù)列an的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,滿足2S2a2(a21),且a11.(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)bn,求數(shù)列bn的最小值項(xiàng)14已知等差數(shù)列an(nN)中,an1an,a2a9232,a4a737.(1)求數(shù)列an的通項(xiàng)公式;(2)若將數(shù)列an的項(xiàng)重新組合,得到新數(shù)列bn,具體方法如下:b1a1,b2a2a3,b3a4a5a6a7,b4a8a9a10a15,依此類推,第n項(xiàng)bn由相應(yīng)的an中2n1項(xiàng)的和組成,求數(shù)列的前n項(xiàng)和Tn.專題限時(shí)集訓(xùn)(九)【基礎(chǔ)演練】1B解析 a72a41,a30,得得2C解析 由ama1a2a3a4a5得a1qm1a(a1q2)5,
4、又a11,所以qm1q10,解得m11,故選C.3B解析 由等差數(shù)列通項(xiàng)公式得:512d,d2,a11,S515.4D解析 等比數(shù)列an,a1a9a2a8a16,各項(xiàng)均為正數(shù),a54,a2a5a8a4364.即a2a5a8的值為64.【提升訓(xùn)練】5C解析 設(shè)公差為d,則(a12d)2(a1d)(a15d),即d22a1d0,又d0,所以d2a1,等比數(shù)列的公比為3.6B解析 log2(2a12a22a10)a1a2a105(a5a6)20.7D解析 a7a62a5,可知q2,又4a1,于是a1qm1a1qn116a,qmn216,mn6,(mn)552,當(dāng)且僅當(dāng),即m2,n4時(shí),等號(hào)成立故的最
5、小值為.8C解析 兩式相減得a3a23a2,即a34a2,所以q4.92解析 3a6a3a4a5123(a15d)a12da13da14d126d12,所以d2.104解析 an2n,所以224.1192解析 由題意,得a2a124,a38,a410,a520,a622,a744,a846,a992.12解:(1)設(shè)數(shù)列an的公比為q,若q1,則S1a11,2S24a14,3S39a19,故S13S31022S2,與已知矛盾,故q1,從而得Sn,由S1,2S2,3S3成等差數(shù)列,得S13S322S2,即134,解得q,所以ana1qn1.(2)由(1)得,bnannn1n,所以Tn(a11)(
6、a22)(ann)Sn(12n).13解:(1)由2S2aa2,可得2(a1a1d)(a1d)2(a1d)又a11,可得d1或d2(舍去)故數(shù)列an是首項(xiàng)為1,公差為1的等差數(shù)列,ann.(2)根據(jù)(1)得Sn,bnn1.由于函數(shù)f(x)x(x0)在(0,)上單調(diào)遞減,在,)上單調(diào)遞增,而3an,舍去),設(shè)公差為d,則解得所以數(shù)列an的通項(xiàng)公式為an3n2(nN)(2)由題意得:bna2n1a2n11a2n12a2n12n11(32n12)(32n15)(32n18)32n1(32n11)2n132n1258(32n14)(32n11),而258(32n14)(32n11)是首項(xiàng)為2,公差為3的等差數(shù)列的前2n1項(xiàng)的和,所以258(32n14)(32n11)2n123322n32n.所以bn322n2322n32n22n2n,所以bn2n22n,所以Tn(4166422n)(4n1)