《2020高考數(shù)學總復習 第十一單元第五節(jié)古典概型》由會員分享,可在線閱讀,更多相關《2020高考數(shù)學總復習 第十一單元第五節(jié)古典概型(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第十一單元 第四節(jié)古典概型一、選擇題1從甲、乙、丙三人中任選兩人,則甲被選中的概率為()A. B. C. D1【解析】基本事件總數(shù)為3,“甲被選中”含2個基本事件,P.【答案】C23名學生排成一排,其中甲、乙兩人站在一起的概率是()A. B. C. D.【解析】基本事件總數(shù)為6,所求事件含4個基本事件,P.【答案】D3.如圖所示,a、b、c、d是四處處于斷開狀態(tài)的開關,任意將其中兩個閉合,則電路被接通的概率為()A1 B. C. D0【解析】任意兩個閉合總數(shù)為6,“電路接通”含3個基本事件P.【答案】B4在兩個袋中分別裝有寫著0,1,2,3,4,5這6個數(shù)的六張卡片,從每個袋中任取一張卡片,兩
2、個數(shù)的和等于7的概率是()A. B. C. D.【解析】從每個袋中任取一張卡片所有取法為36,和為7的情況為(2,5),(3,4),(4,3),(5,2)共4個基本事件P.【答案】C5三人傳球,由甲開始發(fā)球,并作第一次傳球,經(jīng)過3次傳球后,球仍回到甲手中的概率是()A. B. C. D.【解析】三次傳球的方法如圖:共有8種,球又回到甲手中的有2種P.【答案】C6(精選考題安徽高考)甲從正方形四個頂點中任意選擇兩個頂點連成直線,乙也從該正方形四個頂點中任意選擇兩個頂點連成直線,則所得的兩條直線相互垂直的概率是()A. B. C. D.【解析】甲從正方形四個頂點中任意選擇兩個頂點連成直線,乙也從該
3、正方形四個頂點中任意選擇兩個頂點連成直線,所得的直線共有18(對),而相互垂直的有5對,故根據(jù)古典概型概率公式得P.【答案】C7在一個袋子中裝有分別標注數(shù)字1,2,3,4,5的五個小球,這些小球除標注的數(shù)字外完全相同現(xiàn)從中隨機取出兩個小球,則取出的小球標注的數(shù)字之和為3或6的概率是()A. B. C. D.【解析】基本事件的總數(shù)為10,數(shù)字之和為3的事件1個,數(shù)字之和為6的基本事件2個P.【答案】A二、填空題8有20張卡片,每張卡片上分別標有兩個連續(xù)的自然數(shù)k,k1,其中k0,1,2,19.從這20張卡片中任取一張,記事件“該卡片上兩個數(shù)的各位數(shù)字之和(例如:若取到標有9,10的卡片,則卡片上
4、兩個數(shù)的各位數(shù)字之和為91010)不小于14”為A,則P(A)_.【解析】基本事件的總數(shù)為20,卡片上兩個數(shù)的各位數(shù)字之和不小于14的有(7,8),(8,9),(16,17),(17,18),(18,19),共5個基本事件P(A).【答案】9(精選考題東營質(zhì)檢)若以連續(xù)擲兩次骰子分別得到的點數(shù)m,n作為P點坐標,則點P落在圓x2y216內(nèi)的概率為_【解析】基本事件總數(shù)為36,點(m,n)落在圓x2y216內(nèi)有:當m1時,n1,2,3;當m2時,n1,2,3;當m3時,n1,2;當m4時,n無解共有8個基本事件P.【答案】10(精選考題紹興模擬)甲、乙兩人玩猜數(shù)字游戲,先由甲在心中想一個數(shù)字,記
5、為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,且a,b1,2,3,4若|ab|1,則稱甲、乙“心有靈犀”,現(xiàn)任意找兩人玩這個游戲,則他們“心有靈犀”的概率為_【解析】基本事件總數(shù)為4416,滿足a,b1,2,3,4且|ab|1的a,b,有(1,1),(2,2),(3,3),(4,4),(1,2),(2,3),(3,4),(2,1),(3,2),(4,3),共10個基本事件P.【答案】三、解答題11(精選考題山東高考)一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.(1)從袋中隨機取兩個球,求取出的球的編號之和不大于4的概率;(2)先從袋中隨機取一個球,該球的編號為m,
6、將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求nm2的概率【解析】(1)從袋中隨機取兩個球,其一切可能的結(jié)果組成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6個從袋中取出的球的編號之和不大于4的事件共有1和2,1和3,共2個因此所求事件的概率P.(2)先從袋中隨機取一個球,記下編號為m,放回后,再從袋中隨機取一個球,記下編號為n,其一切可能的結(jié)果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16個又滿足條
7、件nm2的事件為(1,3),(1,4),(2,4),共3個,所以滿足條件nm2的事件的概率為P1.故滿足條件nm2的事件的概率為1P11.12(精選考題廣東高考)某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機抽取了100名電視觀眾,相關的數(shù)據(jù)如下表所示:文藝節(jié)目新聞節(jié)目總計20至40歲401858大于40歲152742總計5545100(1)由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關?(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,大于40歲的觀眾應該抽取幾名?(3)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率【解析】(1)因為在20
8、至40歲的58名觀眾中有18名觀眾收看新聞節(jié)目,而大于40歲的42名觀眾中有27名觀眾收看新聞節(jié)目所以,經(jīng)直觀分析,收看新聞節(jié)目的觀眾與年齡是有關的(2)應抽取大于40歲的觀眾為553(名)(3)用分層抽樣方法抽取的5名觀眾中,20至40歲有2名(記為Y1,Y2),大于40歲有3名(記為A1,A2,A3).5名觀眾中任取2名,共有10種不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.設A表示隨機事件“5名觀眾中任取2名,恰有1名觀眾的年齡為20至40歲”,則A中的基本事件有6種:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率為P(A).