《2020高考數(shù)學(xué)總復(fù)習(xí) 第二十九講 等比數(shù)列 新人教版》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)總復(fù)習(xí) 第二十九講 等比數(shù)列 新人教版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第二十九講等比數(shù)列班級_姓名_考號_日期_得分_一、選擇題:(本大題共6小題,每小題6分,共36分,將正確答案的代號填在題后的括號內(nèi))1在等比數(shù)列an中,a7a116,a4a145,則()A.B.C.或 D或解析:在等比數(shù)列an中,a7a11a4a146又a4a145由、組成方程組解得或或.答案:C2在等比數(shù)列an中a12,前n項和為Sn,若數(shù)列an1也是等比數(shù)列,則Sn等于()A2n12 B3nC2n D3n1解析:要an是等比數(shù)列,an1也是等比數(shù)列,則只有an為常數(shù)列,故Snna12n.答案:C評析:本題考查了等比數(shù)列的性質(zhì)及對性質(zhì)的綜合應(yīng)用,抓住只有常數(shù)列有此性質(zhì)是本題的關(guān)鍵,也是技巧
2、;否則逐一驗證,問題運算量就較大3設(shè)等比數(shù)列an的前n項和為Sn,若S6S312,則S9S3等于()A12 B23C34 D13解析:解法一:S6S312,an的公比q1.由,得q3,.解法二:因為an是等比數(shù)列,所以S3,S6S3,S9S6也成等比數(shù)列,即(S6S3)2S3(S9S6),將S6S3代入得,故選C.答案:C4已知等比數(shù)列an中,an0,a10a11e,則lna1lna2lna20的值為()A12 B10C8 De解析:lna1lna2lna20ln(a1a20)(a2a19)(a10a11)lne1010,故選B.答案:B5若數(shù)列an滿足a15,an1(nN*),則其前10項和
3、是()A200 B150C100 D50解析:由已知得(an1an)20,an1an5,S1050.故選D.答案:D6.在等比數(shù)列an中,a1a2an2n1(nN*),則aaa等于()A(2n1)2 B.(2n1)2C4n1 D.(4n1)解析:若a1a2an2n1,則an2n1,a11,q2,所以aaa(4n1),故選D.答案:D二、填空題:(本大題共4小題,每小題6分,共24分,把正確答案填在題后的橫線上)7數(shù)列an中,設(shè)數(shù)列an的前n項和為Sn,則S9_.解析:S9(122242628)(371115)377.答案:3778數(shù)列an的前n項之和為Sn,Sn1an,則an_.解析:n1時,
4、a1S11a1,得a1,n2時,Sn1an,Sn11an1.兩式相減得anan1an,即anan1,所以an是等比數(shù)列,首項為a1,公比為,所以ann1.答案:n19an是等比數(shù)列,前n項和為Sn,S27,S691,則S4_.解析:設(shè)數(shù)列an的公比為q,S27,S691.q4q2120,q23.S4a1(1q)(1q2)(a1a1q)(1q2)28.答案:2810設(shè)數(shù)列an的前n項和為Sn(nN),關(guān)于數(shù)列an有下列四個命題:若an既是等差數(shù)列又是等比數(shù)列,則anan1(nN)若Snan2bn(a,bR),則an是等差數(shù)列若Sn1(1)n,則an是等比數(shù)列若an是等比數(shù)列,則Sm,S2mSm,
5、S3mS2m(mN)也成等比數(shù)列其中正確的命題是_(填上正確命題的序號)解析:若an既是等差數(shù)列又是等比數(shù)列,an為非零常數(shù)列,故anan1(nN);若an是等差數(shù)列,Snn2n為an2bn(a,bR)的形式;若Sn1(1)n,則n2時,anSnSn11(1)n1(1)n1(1)n1(1)n,而a12,適合上述通項公式,所以an(1)n1(1)n是等比數(shù)列;若an是等比數(shù)列,當(dāng)公比q1且m為偶數(shù)時,Sm,S2mSm,S3mS2m不成等比數(shù)列答案:三、解答題:(本大題共3小題,11、12題13分,13題14分,寫出證明過程或推演步驟)11已知數(shù)列an中,a11,前n項和為Sn,對任意的自然數(shù)n2
6、,an是3Sn4與2Sn1的等差中項(1)求an的通項公式;(2)求Sn.解:(1)由已知,當(dāng)n2時,2an(3Sn4)(2Sn1),又anSnSn1,由得an3Sn4(n2)an13Sn14兩式相減得an1an3an1.a2,a3,an,成等比數(shù)列,其中a23S243(1a2)4,即a2,q,當(dāng)n2時,ana2qn2n2n1.即(2)解法一:當(dāng)n2時Sna1a2ana1(a2an)11n1,當(dāng)n1時S110也符合上述公式Snn1.解法二:由(1)知n2時,an3Sn4,即Sn(an4),n2時,Sn(an4)n1.又n1時,S1a11亦適合上式Snn1.12設(shè)數(shù)列an的前n項和為Sn,且(3
7、m)Sn2manm3(nN*),其中m為常數(shù),且m3.(1)求證:an是等比數(shù)列;(2)若數(shù)列an的公比qf(m),數(shù)列bn滿足b1a1,bnf(bn1)(nN*,n2),求證:為等差數(shù)列,并求bn.解:(1)證明:由(3m)Sn2manm3,得(3m)Sn12man1m3,兩式相減,得(3m)an12man,m3,(n1)an是等比數(shù)列(2)由(3m)S12ma1m3,解出a11,b11.又an的公比為,qf(m),n2時,bnf(bn1),bnbn13bn3bn1,推出.是以1為首項,為公差的等差數(shù)列,1,又1符合上式,bn.13已知an是首項為a1,公比q(q1)為正數(shù)的等比數(shù)列,其前n
8、項和為Sn,且有5S24S4,設(shè)bnqSn.(1)求q的值;(2)數(shù)列bn能否是等比數(shù)列?若是,請求出a1的值;若不是,請說明理由解:(1)由題意知5S24S4,S2,S4,5(1q2)4(1q4),得q21.又q0,q.(2)解法一:Sn2a1a1n1,于是bnqSn2a1a1n1,若bn是等比數(shù)列,則2a10,即a1,此時,bnn1,數(shù)列bn是等比數(shù)列,所以存在實數(shù)a1,使數(shù)列bn為等比數(shù)列解法二:由于bn2a1a1n1,所以b1a1,b2a1,b3a1,若數(shù)列bn為等比數(shù)列,則bb1b3,即2,整理得4aa10,解得a1或a10(舍去),此時bnn1.故存在實數(shù)a1,使數(shù)列bn為等比數(shù)列