《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第10講 對(duì)數(shù)與對(duì)數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2021版高考數(shù)學(xué)一輪總復(fù)習(xí) 第二章 函數(shù) 第10講 對(duì)數(shù)與對(duì)數(shù)函數(shù)導(dǎo)學(xué)案 新人教A版(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第10講對(duì)數(shù)與對(duì)數(shù)函數(shù)【課程要求】1理解對(duì)數(shù)的概念,掌握指數(shù)與對(duì)數(shù)的相互轉(zhuǎn)化,會(huì)運(yùn)用指數(shù)、對(duì)數(shù)運(yùn)算法則進(jìn)行有關(guān)運(yùn)算2掌握對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)及其應(yīng)用3掌握以對(duì)數(shù)函數(shù)為載體的復(fù)合函數(shù)的有關(guān)性質(zhì)4了解指數(shù)函數(shù)yax與對(duì)數(shù)函數(shù)ylogax互為反函數(shù)的關(guān)系(a0且a1)對(duì)應(yīng)學(xué)生用書p25【基礎(chǔ)檢測(cè)】1判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“”或“”)(1)若MN0,則loga(MN)logaMlogaN.()(2)對(duì)數(shù)函數(shù)ylogax(a0且a1)在(0,)上是增函數(shù)()(3)函數(shù)yln與yln(1x)ln(1x)的定義域相同()(4)對(duì)數(shù)函數(shù)ylogax(a0且a1)的圖象過(guò)定點(diǎn)(1,0)且過(guò)點(diǎn)(
2、a,1),函數(shù)圖象只在第一、四象限()答案 (1)(2)(3)(4)2必修1p68T4log29log34log45log52_解析原式2log23log34log45log5222.答案23必修1p82A組T6已知a2,blog2,clog,則a,b,c的大小關(guān)系為_解析0a1,b1,cab.答案cab4必修1p74A組T7函數(shù)y的定義域是_解析由log(2x1)0,得02x11.0,log5ba,lgbc,5d10,則下列等式一定成立的是()AdacBacdCcadDdac解析由log5ba知b5a,由lgbc知clg5aalg5,由5d10知dlog510,cdalg5a,故選B.答案B
3、6已知a0,a1,函數(shù)yax與yloga(x)的圖象可能是()解析函數(shù)yloga(x)的圖象與ylogax的圖象關(guān)于y軸對(duì)稱,符合條件的只有B.答案B【知識(shí)要點(diǎn)】1對(duì)數(shù)概念如果axN(a0,且a1),那么數(shù)x叫做以a為底N的_對(duì)數(shù)_,記作xlogaN,其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù),logaN叫做對(duì)數(shù)式性質(zhì)對(duì)數(shù)式與指數(shù)式的互化:axN_xlogaN_loga10,logaa1,alogaN_N_運(yùn)算法則loga(MN)_logaMlogaN_loga_logaMlogaN_logaMn_nlogaM_(nR)a0,且a1,M0,N0換底公式換底公式:logab(a0,且a1,c0,且c1,b
4、0)2.對(duì)數(shù)函數(shù)的圖象與性質(zhì)函數(shù)ylogax(a0,且a1)圖象a10a1圖象特征在y軸_右側(cè)_,過(guò)定點(diǎn)(1,0)當(dāng)x逐漸增大時(shí),圖象是_上升_的當(dāng)x逐漸增大時(shí),圖象是_下降_的性質(zhì)定義域(0,)值域R單調(diào)性在(0,)上是_增函數(shù)_在(0,)上是_減函數(shù)_函數(shù)值變化規(guī)律當(dāng)x1時(shí),_y0_當(dāng)x1時(shí),_y0_;當(dāng)0x1時(shí),_y1時(shí),_y0_;當(dāng)0x0_3.反函數(shù)指數(shù)函數(shù)yax與對(duì)數(shù)函數(shù)ylogax互為反函數(shù),它們的圖象關(guān)于直線_yx_對(duì)稱【知識(shí)拓展】1換底公式的兩個(gè)重要結(jié)論(1)logab;(2)logambnlogab.其中a0且a1,b0且b1,m,nR.2對(duì)數(shù)函數(shù)的圖象與底數(shù)大小的比較如圖,
5、作直線y1,則該直線與四個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo)為相應(yīng)的底數(shù),故0cd1a0時(shí),g(x)的圖象,然后根據(jù)g(x)的圖象關(guān)于y軸對(duì)稱畫出x1時(shí),直線yxa與ylog2x只有一個(gè)交點(diǎn)答案 (1,)小結(jié)(1)對(duì)一些可通過(guò)平移、對(duì)稱變換作出其圖象的對(duì)數(shù)型函數(shù),在求解其單調(diào)性(單調(diào)區(qū)間)、值域(最值)、零點(diǎn)時(shí),常利用數(shù)形結(jié)合思想求解(2)一些對(duì)數(shù)型方程、不等式問(wèn)題常轉(zhuǎn)化為相應(yīng)的函數(shù)圖象問(wèn)題,利用數(shù)形結(jié)合法求解4已知函數(shù)y的圖象與函數(shù)ylogax(a0,a1)的圖象交于點(diǎn)P(x0,y0),如果x02,那么a的取值范圍是()A2,) B4,)C8,) D16,)解析由已知中兩函數(shù)的圖象交于點(diǎn)P(x0,y0),
6、由指數(shù)函數(shù)的性質(zhì)可知,若x02,則0y0,即01且x02,解得a16.答案D5當(dāng)0x時(shí),4xlogax,則a的取值范圍是()A.B.C(1,) D(,2)解析由題意得,當(dāng)0a1時(shí),要使得4xlogax,即當(dāng)0x時(shí),函數(shù)y4x的圖象在函數(shù)ylogax圖象的下方又當(dāng)x時(shí),42,即函數(shù)y4x的圖象過(guò)點(diǎn).把點(diǎn)代入ylogax,得a.若函數(shù)y4x的圖象在函數(shù)ylogax圖象的下方,則需a1時(shí),不符合題意,舍去所以實(shí)數(shù)a的取值范圍是.答案B對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用例3(1)設(shè)alog412,blog515,clog618,則()AabcBbcaCacbDcba解析a1log43,b1log53,c1log6
7、3,log43log53log63,abc.答案A(2)若函數(shù)f(x)log2(x2ax3a)在區(qū)間(,2上是減函數(shù),則實(shí)數(shù)a的取值范圍是()A(,4) B(4,4C(,4)2,) D4,4)解析由題意得x2ax3a0在區(qū)間(,2上恒成立且函數(shù)yx2ax3a在(,2上單調(diào)遞減,則2且(2)2(2)a3a0,解得實(shí)數(shù)a的取值范圍是4,4),故選D.答案D(3)若函數(shù)f(x)loga(a0,a1)在區(qū)間內(nèi)恒有f(x)0,則f(x)的單調(diào)遞增區(qū)間為()A(0,) B(2,)C(1,) D.解析令Mx2x,當(dāng)x時(shí),M(1,),f(x)0,所以a1,所以函數(shù)ylogaM為增函數(shù),又M,因此M的單調(diào)遞增區(qū)
8、間為.又x2x0,所以x0或x0的x的取值集合;將復(fù)合函數(shù)分解成基本初等函數(shù)ylogau及uf(x);分別確定這兩個(gè)函數(shù)的單調(diào)區(qū)間;若這兩個(gè)函數(shù)同增或同減,則ylogaf(x)為增函數(shù),若一增一減,則ylogaf(x)為減函數(shù),即“同增異減”例4已知函數(shù)f(x)32log2x,g(x)log2x.(1)當(dāng)x1,4時(shí),求函數(shù)h(x)f(x)1g(x)的值域;(2)如果對(duì)任意的x1,4,不等式f(x2)f()kg(x)恒成立,求實(shí)數(shù)k的取值范圍解析 (1)h(x)(42log2x)log2x2(log2x1)22,因?yàn)閤1,4,所以log2x0,2,故函數(shù)h(x)的值域?yàn)?,2(2)由f(x2)f
9、()kg(x),得(34log2x)(3log2x)klog2x,令tlog2x,因?yàn)閤1,4,所以tlog2x0,2,所以(34t)(3t)kt對(duì)一切t0,2恒成立,當(dāng)t0時(shí),kR;當(dāng)t(0,2時(shí),k恒成立,即k4t15,因?yàn)?t12,當(dāng)且僅當(dāng)4t,即t時(shí)取等號(hào),所以4t15的最小值為3.綜上,實(shí)數(shù)k的取值范圍是(,3)小結(jié)1.無(wú)論題型如何變化,都是圍繞對(duì)數(shù)函數(shù)的單調(diào)性,變換不同的角度來(lái)應(yīng)用例3(1)是對(duì)數(shù)函數(shù)單調(diào)性的直接應(yīng)用,利用單調(diào)性來(lái)比較大小、解不等式;例3(2),(3)是對(duì)數(shù)函數(shù)單調(diào)性的遷移應(yīng)用,根據(jù)單調(diào)性來(lái)求參數(shù)的范圍,所以弄清對(duì)數(shù)函數(shù)的單調(diào)性是解題的關(guān)鍵,并注意有時(shí)需對(duì)底數(shù)字母參
10、數(shù)進(jìn)行討論2與對(duì)數(shù)型函數(shù)有關(guān)的恒成立問(wèn)題多與其定義域和值域有關(guān)對(duì)于函數(shù)ylogaf(x)(a0,且a1),若定義域?yàn)镽,則f(x)0在R上恒成立;若值域?yàn)镽,則f(x)能取遍所有正實(shí)數(shù)6若實(shí)數(shù)a,b,c滿足loga2logb2logc2,則下列關(guān)系中不可能成立的是()AabcBbacCcbaDacb解析由loga2logb2logc2的大小關(guān)系,可知a,b,c有如下四種可能:1cba;0a1cb;0ba1c;0cba1.對(duì)照選項(xiàng)可知A中關(guān)系不可能成立答案A7已知不等式logx(2x21)logx(3x)0成立,則實(shí)數(shù)x的取值范圍是_解析原不等式或,解不等式組得x0,a1)的定義域、值域都是1,2,則ab_解析當(dāng)0a1時(shí),易知函數(shù)f(x)為增函數(shù),由題意有解得a2,b1,符合題意,此時(shí)ab3.綜上可得:ab的值為或3.答案或3對(duì)應(yīng)學(xué)生用書p27(2019全國(guó)卷理)若ab,則()Aln(ab)0B3a0D|a|b|解析取a2,b1,滿足ab,但ln(ab)0,則A錯(cuò),排除A;由932313,知B錯(cuò),排除B;取a1,b2,滿足ab,但|1|b,所以a3b3,即a3b30,C正確故選C.答案C11