《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 課堂達(dá)標(biāo)14 導(dǎo)數(shù)與函數(shù)的單調(diào)性 文 新人教版》由會員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 課堂達(dá)標(biāo)14 導(dǎo)數(shù)與函數(shù)的單調(diào)性 文 新人教版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 課堂達(dá)標(biāo)14 導(dǎo)數(shù)與函數(shù)的單調(diào)性 文 新人教版1(2018九江模擬)函數(shù)f(x)(x3)ex的單調(diào)遞增區(qū)間是()A(,2)B(0,3)C(1,4) D(2,)解析函數(shù)f(x)(x3)ex的導(dǎo)數(shù)為f(x)(x3)exex(x3)ex(x2)ex.由函數(shù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,得當(dāng)f(x)0時,函數(shù)f(x)單調(diào)遞增,此時由不等式f(x)(x2)ex0,解得x2.答案D2(高考課標(biāo)全國卷)若函數(shù)f(x)kxln x在區(qū)間(1,)單調(diào)遞增,則k的取值范圍是()A(,2B(,1C2,) D1,)解析由于f(x)k,f(x)kxln x在區(qū)間(1,)
2、單調(diào)遞增f(x)k0在(1,)上恒成立由于k,而01,所以k1.即k的取值范圍為1,)答案D3(2017浙江)函數(shù)yf(x)的導(dǎo)函數(shù)yf(x)的圖象如圖所示,則函數(shù)yf(x)的圖象可能是()解析原函數(shù)先減再增,再減再增,且由增變減時,極值點大于0,因此選D.答案D4(2018湖南省永州市三模)已知函數(shù)f(x)x3ax2bx1在區(qū)間0,1上單調(diào)遞減,mab,則m的取值范圍是( )A. B.C. D3,)解析依題意,f(x)3x22axb0,在0,1上恒成立只需要即可,32a2b0,mab.m的取值范圍是(,答案A5(2018長治模擬)函數(shù)f(x)x22mln x(m0)的單調(diào)遞減區(qū)間為()A(0
3、,)B(0,)C(,) D(0,)(,)解析由條件知函數(shù)f(x)的定義域為(0,)因為m0,則f(x).當(dāng)x變化時,f(x),f(x)的變化情況如下表:x(0,)(,)f(x)0f(x)極小值由上表可知,函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,)答案B6(2018山西省長治二中、晉城一中、康杰中學(xué)、臨汾一中、忻州一中五校)定義在(,0)上的函數(shù)f(x)滿足x2f(x)10,f(1)6,則不等式f(lg x)5的解集為()A(,10) B(0,10)C(10,) D(1,10)解析由x2f(x)10,得f(x)0,設(shè)g(x)f(x)5,則g(x)f(x),故g(x)在(0,)上單
4、調(diào)遞增,又g(1)0,故g(x)0的解集為(0,1),即f(x)5的解集為(0,1),由0lg x1解得1x10,則所求不等式的解集為(1,10),故選D.答案D7(2018青島模擬)若函數(shù)f(x)x3bx2cxd的單調(diào)減區(qū)間為(1,3),則bc_.解析f(x)3x22bxc,由題意知1x3是不等式3x22bxc0的解集,1,3是f(x)0的兩個根,b3,c9,bc12.答案128(2018九江第一次統(tǒng)考)已知函數(shù)f(x)x22axln x,若f(x)在區(qū)間上是增函數(shù),則實數(shù)a的取值范圍為_解析f(x)x2a0在上恒成立,則2ax在上恒成立,因為max,所以2a,即a.答案9(2018衡水中學(xué)
5、模擬)已知函數(shù)f(x)(xR)滿足f(1)1,f(x)的導(dǎo)數(shù)f(x),則不等式f(x2)的解集為_.解析設(shè)F(x)f(x)x,F(xiàn)(x)f(x),f(x),F(xiàn)(x)f(x)0,即函數(shù)F(x)在R上單調(diào)遞減,f(x2),f(x2)f(1),F(xiàn)(x2)F(1),而函數(shù)F(x)在R上單調(diào)遞減,x21,即x(,1)(1,)答案(,1)(1,)10已知函數(shù)f(x)ln x,其中aR,且曲線yf(x)在點(1,f(1)處的切線垂直于直線yx.(1)求a的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間解(1)對f(x)求導(dǎo)得f(x),由f(x)在點(1,f(1)處的切線垂直于直線yx知f(1)a2,解得a.(2)由(1)
6、知f(x)ln x,則f(x).令f(x)0,解得x1或x5.因為x1不在f(x)的定義域(0,)內(nèi),故舍去當(dāng)x(0,5)時,f(x)0,故f(x)在(5,)內(nèi)為增函數(shù)綜上,f(x)的單調(diào)增區(qū)間為(5,),單調(diào)減區(qū)間為(0,5)B能力提升練1(2018湛江一模)若函數(shù)f(x)x(bR)的導(dǎo)函數(shù)在區(qū)間(1,2)上有零點,則f(x)在下列區(qū)間上單調(diào)遞增的是()A(2,0) B(0,1)C(1,) D(,2)解析由題意知,f(x)1,函數(shù)f(x)x(bR)的導(dǎo)函數(shù)在區(qū)間(1,2)上有零點,當(dāng)10時,bx2,又x(1,2),b(1,4),令f(x)0,解得x或x,即f(x)的單調(diào)遞增區(qū)間為(,),(,
7、),b(1,4),(,2)符合題意答案D2(2018河南新鄉(xiāng)三模)定義在(0,)上的函數(shù)f(x)滿足f(x)2(x)f(x),其中f(x)為f(x)的導(dǎo)函數(shù),則下列不等式中,一定成立的是( )Af(1) B. Cf(1) D. ,當(dāng)f(x)(1)時,滿足f(x)2(x)f(x),易得f(1)2,1,1,f(1),當(dāng)f(x)(1)時,滿足f(x)2(x)f(x),易得f(1)2,1,1,f(1),故A,C,D都錯答案B3已知函數(shù)f(x)2x2ln x(a0)若函數(shù)f(x)在1,2上為單調(diào)函數(shù),則a的取值范圍是_.解析f(x)4x,若函數(shù)f(x)在1,2上為單調(diào)函數(shù),即f(x)4x0或f(x)4x
8、0在1,2上恒成立,即4x或4x在1,2上恒成立令h(x)4x,則h(x)在1,2上單調(diào)遞增,所以h(2)或h(1),即或3,又a0,所以0a或a1.答案1,)4若函數(shù)f(x)x2exax在R上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍是_解析f(x)x2exax,f(x)2xexa,函數(shù)f(x)x2exax在R上存在單調(diào)遞增區(qū)間,f(x)2xexa0,即a2xex有解,設(shè)g(x)2xex,則g(x)2ex,令g(x)0,解得xln 2,則當(dāng)x0,g(x)單調(diào)遞增,當(dāng)xln 2時,g(x)0,g(x)單調(diào)遞減,當(dāng)xln 2時,g(x)取得最大值,且g(x)maxg(ln 2)2ln 22,a2ln
9、22.答案(,2ln 225(2018山東省德州市四月二模文科)已知函數(shù)f(x)x22aln x(a2)x,aR.(1)當(dāng)a1時,求函數(shù)f(x)的極值;(2)當(dāng)a0時,討論函數(shù)f(x)單調(diào)性;(3)是否存在實數(shù)a,對任意的m,n(0,),且mn,有a恒成立?若存在,求出a的取值范圍;若不存在,說明理由解(1)當(dāng)a1時,f(x)x22ln x3x,f(x)x3.當(dāng)0x1或x2時,f(x)0,f(x)單調(diào)遞增;當(dāng)1x2時,f(x)f(x)單調(diào)遞減,所以x1時,f(x)極大值f(1);x2時,f(x)極小值f(2)2ln 24.(2)當(dāng)a0時,f(x)x(a2),當(dāng)a2,即a2時,由f(x)0可得0
10、x2或xa,此時f(x)單調(diào)遞增;由f(x)0可得2xa,此時f(x)單調(diào)遞減;當(dāng)a2,即a2時,f(x)0在(0,)上恒成立,此時f(x)單調(diào)遞增;當(dāng)a2,即2a0時,由f(x)0可得0xa或x2,此時f(x)單調(diào)遞增;由f(x)0可得ax2,此時f(x)單調(diào)遞減綜上:當(dāng)a2時,f(x)增區(qū)間為(0,2),(a,),減區(qū)間為(2,a);當(dāng)a2時,f(x)增區(qū)間為(0,),無減區(qū)間;當(dāng)2a0時,f(x)增區(qū)間為(0,a),(2,),減區(qū)間為(a,2)(3)假設(shè)存在實數(shù)a,對任意的m,n(0,),且mn,有a恒成立,不妨設(shè)mn0,則由a恒成立可得:f(m)amf(n)an恒成立,令g(x)f(x
11、)ax,則g(x)在(0,)上單調(diào)遞增,所以g(x)0恒成立,即f(x)a0恒成立,x(a2)a0,即0恒成立,又x0,x22x2a0在x0時恒成立,amin,當(dāng)a時,對任意的m,n(0,),且mn,有a恒成立C尖子生專練已知函數(shù)f(x)aln xax3(aR)(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若函數(shù)yf(x)的圖象在點(2,f(2)處的切線的傾斜角為45,對于任意的t1,2,函數(shù)g(x)x3x2在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍解(1)函數(shù)f(x)的定義域為(0,),且f(x).當(dāng)a0時,f(x)的增區(qū)間為(0,1),減區(qū)間為(1,);當(dāng)a0時,f(x)的增區(qū)間為(1,),減區(qū)間為(0,1);當(dāng)a0時,f(x)不是單調(diào)函數(shù)(2)由(1)及題意得f(2)1,即a2,f(x)2ln x2x3,f(x).g(x)x3x22x,g(x)3x2(m4)x2.g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),即g(x)0在區(qū)間(t,3)上有變號零點由于g(0)2,當(dāng)g(t)0,即3t2(m4)t20對任意t1,2恒成立,由于g(0)0,故只要g(1)0且g(2)0,即m5且m9,即m9;由g(3)0,即m.所以m9.即實數(shù)m的取值范圍是.