2022年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版
《2022年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第35講 曲線方程及圓錐曲線的綜合問題教案 新人教版 一.課標(biāo)要求: 1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題常化為等式解決,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練; 2.通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想; 3.了解圓錐曲線的簡(jiǎn)單應(yīng)用。 二.命題走向 近年來(lái)圓錐曲線在高考中比較穩(wěn)定,解答題往往以中檔題或以押軸題形式出現(xiàn),主要考察學(xué)生邏輯推理能力、運(yùn)算能力,考察學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力。但圓錐曲線在新課標(biāo)中化歸到選學(xué)內(nèi)容,要求有所降低,估計(jì)xx年高考對(duì)本講的考察,仍將以以下三類題型為主。 1.求曲線(或軌跡)的方程,對(duì)于這
2、類問題,高考常常不給出圖形或不給出坐標(biāo)系,以考察學(xué)生理解解析幾何問題的基本思想方法和能力; 2.與圓錐曲線有關(guān)的最值問題、參數(shù)范圍問題,這類問題的綜合型較大,解題中需要根據(jù)具體問題、靈活運(yùn)用解析幾何、平面幾何、函數(shù)、不等式、三角知識(shí),正確的構(gòu)造不等式或方程,體現(xiàn)了解析幾何與其他數(shù)學(xué)知識(shí)的聯(lián)系。 預(yù)測(cè)07年高考: 1.出現(xiàn)1道復(fù)合其它知識(shí)的圓錐曲線綜合題; 2.可能出現(xiàn)1道考查求軌跡的選擇題或填空題,也可能出現(xiàn)在解答題中間的小問。 三.要點(diǎn)精講 1.曲線方程 (1)求曲線(圖形)方程的方法及其具體步驟如下: 步 驟 含 義 說(shuō) 明 1、“建”:建立
3、坐標(biāo)系;“設(shè)”:設(shè)動(dòng)點(diǎn)坐標(biāo)。 建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo)。 (1) 所研究的問題已給出坐標(biāo)系,即可直接設(shè)點(diǎn)。 (2) 沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。 2、現(xiàn)(限):由限制條件,列出幾何等式。 寫出適合條件P的點(diǎn)M的集合P={M|P(M)} 這是求曲線方程的重要一步,應(yīng)仔細(xì)分析題意,使寫出的條件簡(jiǎn)明正確。 3、“代”:代換 用坐標(biāo)法表示條件P(M),列出方程f(x,y)=0 常常用到一些公式。 4、“化”:化簡(jiǎn) 化方程f(x,y)=0為最簡(jiǎn)形式。 要注意同解變形。 5、證明 證明化簡(jiǎn)以后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
4、 化簡(jiǎn)的過(guò)程若是方程的同解變形,可以不要證明,變形過(guò)程中產(chǎn)生不增根或失根,應(yīng)在所得方程中刪去或補(bǔ)上(即要注意方程變量的取值范圍)。 這五個(gè)步驟(不包括證明)可濃縮為五字“口訣”:建設(shè)現(xiàn)(限)代化” (2)求曲線方程的常見方法: 直接法:也叫“五步法”,即按照求曲線方程的五個(gè)步驟來(lái)求解。這是求曲線方程的基本方法。 轉(zhuǎn)移代入法:這個(gè)方法又叫相關(guān)點(diǎn)法或坐標(biāo)代換法。即利用動(dòng)點(diǎn)是定曲線上的動(dòng)點(diǎn),另一動(dòng)點(diǎn)依賴于它,那么可尋求它們坐標(biāo)之間的關(guān)系,然后代入定曲線的方程進(jìn)行求解。 幾何法:就是根據(jù)圖形的幾何性質(zhì)而得到軌跡方程的方法。 參數(shù)法:根據(jù)題中給定的軌跡條件,用一個(gè)參數(shù)來(lái)分別動(dòng)點(diǎn)的坐標(biāo),間接地
5、把坐標(biāo)x,y聯(lián)系起來(lái),得到用參數(shù)表示的方程。如果消去參數(shù),就可以得到軌跡的普通方程。 2.圓錐曲線綜合問題 (1)圓錐曲線中的最值問題、范圍問題 通常有兩類:一類是有關(guān)長(zhǎng)度和面積的最值問題;一類是圓錐曲線中有關(guān)的幾何元素的最值問題。這些問題往往通過(guò)定義,結(jié)合幾何知識(shí),建立目標(biāo)函數(shù),利用函數(shù)的性質(zhì)或不等式知識(shí),以及觀形、設(shè)參、轉(zhuǎn)化、替換等途徑來(lái)解決。解題時(shí)要注意函數(shù)思想的運(yùn)用,要注意觀察、分析圖形的特征,將形和數(shù)結(jié)合起來(lái)。 圓錐曲線的弦長(zhǎng)求法: 設(shè)圓錐曲線C∶f(x,y)=0與直線l∶y=kx+b相交于A(x1,y1)、B(x2,y2)兩點(diǎn),則弦長(zhǎng)|AB|為: 若弦AB過(guò)圓錐曲線
6、的焦點(diǎn)F,則可用焦半徑求弦長(zhǎng),|AB|=|AF|+|BF|. 在解析幾何中求最值,關(guān)鍵是建立所求量關(guān)于自變量的函數(shù)關(guān)系,再利用代數(shù)方法求出相應(yīng)的最值.注意點(diǎn)是要考慮曲線上點(diǎn)坐標(biāo)(x,y)的取值范圍。 (2)對(duì)稱、存在性問題,與圓錐曲線有關(guān)的證明問題 它涉及到線段相等、角相等、直線平行、垂直的證明方法,以及定點(diǎn)、定值問題的判斷方法。 (3)實(shí)際應(yīng)用題 數(shù)學(xué)應(yīng)用題是高考中必考的題型,隨著高考改革的深入,同時(shí)課本上也出現(xiàn)了許多與圓錐曲線相關(guān)的實(shí)際應(yīng)用問題,如橋梁的設(shè)計(jì)、探照燈反光鏡的設(shè)計(jì)、聲音探測(cè),以及行星、人造衛(wèi)星、彗星運(yùn)行軌道的計(jì)算等。 涉及與圓錐曲線有關(guān)的應(yīng)用問題的解決關(guān)鍵
7、是建立坐標(biāo)系,合理選擇曲線模型,然后轉(zhuǎn)化為相應(yīng)的數(shù)學(xué)問題作出定量或定性分析與判斷,解題的一般思想是: (4)知識(shí)交匯題 圓錐曲線經(jīng)常和數(shù)列、三角、平面向量、不等式、推理知識(shí)結(jié)合到一塊出現(xiàn)部分有較強(qiáng)區(qū)分度的綜合題。 四.典例解析 題型1:求軌跡方程 例1.(1)一動(dòng)圓與圓外切,同時(shí)與圓內(nèi)切,求動(dòng)圓圓心的軌跡方程,并說(shuō)明它是什么樣的曲線。 (2)雙曲線有動(dòng)點(diǎn),是曲線的兩個(gè)焦點(diǎn),求的重心的軌跡方程。 解析:(1)(法一)設(shè)動(dòng)圓圓心為,半徑為,設(shè)已知圓的圓心分別為、, 將圓方程分別配方得:,, 當(dāng)與相切時(shí),有 ① 當(dāng)與相切時(shí),有
8、 ② 將①②兩式的兩邊分別相加,得, 即 ③ 移項(xiàng)再兩邊分別平方得: ④ 兩邊再平方得:, 整理得, 所以,動(dòng)圓圓心的軌跡方程是,軌跡是橢圓。 (法二)由解法一可得方程, 由以上方程知,動(dòng)圓圓心到點(diǎn)和的距離和是常數(shù),所以點(diǎn)的軌跡是焦點(diǎn)為、,長(zhǎng)軸長(zhǎng)等于的橢圓,并且橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上, ∴,,∴,, ∴, ∴圓心軌跡方程為。 (2)如圖,設(shè)點(diǎn)坐標(biāo)各為,∴在已知雙曲線方程中,∴ ∴已知雙曲線兩焦點(diǎn)為, ∵存在,∴ 由三角形重心坐標(biāo)公式有,即 。 ∵,∴。 已知點(diǎn)在雙曲線上,將上面結(jié)果代入已知曲線方程,有 即所求
9、重心的軌跡方程為:。 點(diǎn)評(píng):定義法求軌跡方程的一般方法、步驟;“轉(zhuǎn)移法”求軌跡方程的方法。 例2.(xx上海,3)設(shè)P為雙曲線y2=1上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OP的中點(diǎn),則點(diǎn)M的軌跡方程是 。 解析:(1)答案:x2-4y2=1 設(shè)P(x0,y0) ∴M(x,y) ∴ ∴2x=x0,2y=y(tǒng)0 ∴-4y2=1x2-4y2=1 點(diǎn)評(píng):利用中間變量法(轉(zhuǎn)移法)是求軌跡問題的重要方法之一。 題型2:圓錐曲線中最值和范圍問題 例3.(1)設(shè)AB是過(guò)橢圓中心的弦,橢圓的左焦點(diǎn)為,則△F1AB的面積最大為( ) A. B.
10、C. D. (2)已知雙曲線的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且,則此雙曲線的離心率的最大值是( ) A. B. C. 2 D. (3)已知A(3,2)、B(-4,0),P是橢圓上一點(diǎn),則|PA|+|PB|的最大值為( ) A. 10 B. C. D. 解析:(1)如圖,由橢圓對(duì)稱性知道O為AB的中點(diǎn),則△F1OB的面積為△F1AB面積的一半。又,△F1OB邊OF1上的高為,而的最大值是b,所以△F1OB的面積最大值為。所以△F1AB的面積最大值為cb。 點(diǎn)評(píng):抓
11、住△F1AB中為定值,以及橢圓是中心對(duì)稱圖形。 (2)解析:由雙曲線的定義, 得:, 又,所以,從而 由雙曲線的第二定義可得, 所以。又,從而。故選B。 點(diǎn)評(píng):“點(diǎn)P在雙曲線的右支上”是銜接兩個(gè)定義的關(guān)鍵,也是不等關(guān)系成立的條件。利用這個(gè)結(jié)論得出關(guān)于a、c的不等式,從而得出e的取值范圍。 (3)解析:易知A(3,2)在橢圓內(nèi),B(-4,0)是橢圓的左焦點(diǎn)(如圖),則右焦點(diǎn)為F(4,0)。連PB,PF。由橢圓的定義知: , 所以。 由平面幾何知識(shí), ,即, 而, 所以。 點(diǎn)評(píng):由△PAF成立的條件,再延伸到特
12、殊情形P、A、F共線,從而得出這一關(guān)鍵結(jié)論。 例4.(1)(06全國(guó)1文,21)設(shè)P是橢圓短軸的一個(gè)端點(diǎn),為橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值。 (2)(06上海文,21)已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn). ①求該橢圓的標(biāo)準(zhǔn)方程; ②若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程; ③過(guò)原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值。 (3)(06山東文,21)已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,兩準(zhǔn)線間的距離為l。 (Ⅰ)求橢圓的方程; (Ⅱ)直線過(guò)點(diǎn)P(0,2)且與橢圓相交于A、B兩點(diǎn),當(dāng)ΔAOB面積取得最
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂度寒假充實(shí)促成長(zhǎng)
- 紅色插畫風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制