【溫馨提示】====設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======課題帶三維,則表示文件里包含三維源文件,由于三維組成零件數量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======詳情可咨詢QQ:1304139763
畢業(yè)設計(外文)翻譯
題目: 某型裝載機工作機構設計
專 業(yè) 名 稱 機械設計制造及其自動化
班 級 學 號 088105438
學 生 姓 名 朱晨宇
指 導 教 師 賀紅林
二O一二年 六 月
Loaders
一、 Basic Concept .
A loader is a type of construction equipment (engineering vehicle) machinery that is primarily used to "load" material into another type of machinery (dump truck, conveyor belt, rail-car, etc.).Loaders are used mainly for uploading materials into trucks, laying pipe, clearing rubble, and digging. A loader is not the most efficient machine for digging as it cannot dig very deep below the level of its wheels, like a backhoe can. Their deep bucket can usually store about 3-6 cubic meters of earth. The front loader's bucket capacity is much bigger than a bucket capacity of a backhoe loader. Loaders are not classified as earthmoving machinery, as their primary purpose is other than earthmoving.
Unlike most bulldozers, most loaders are wheeled and not tracked, although track loaders are common. They are successful where sharp edged materials in construction debris would damage rubber wheels, or where the ground is soft and muddy. Wheels provide better mobility and speed and do not damage paved roads as much as tracks, but provide less traction.
Unlike standard tractors fitted with a front bucket, many large loaders do not use automotive steering mechanisms. Instead, they steer by a hydraulically actuated pivot point set exactly between the front and rear axles. This is referred to as "articulated steering" and allows the front axle to be solid, allowing it to carry greater weight. Articulated steering provides better maneuverability for a given wheelbase. Since the front wheels and attachment rotate on the same axis, the operator is able to "steer" his load in an arc after positioning the machine, which can be useful.
The loader assembly may be a removable attachment or permanently mounted. Often the bucket can be replaced with other devices or tools--for example, many can mount forks to lift heavy pallets or shipping containers, and a hydraulically-opening "clamshell" bucket allows a loader to act as a light dozer or scraper.
In construction areas loaders are also used to transport building materials - such as bricks, pipe, metal bars, and digging tools - over short distances.Loaders are also used for snow removal, using their bucket or a snowbasket, but usually using a snowplow attachment. They clear snow from streets, highways and parking lots. They sometimes load snow into dump trucks for transport.
Front loaders gained popularity during the last two decades, especially in urban engineering projects and small earthmoving works. Many engineering vehicle manufacturers offer a wide range of loaders, the most notable are those of John Deere, Caterpillar, Case, Volvo, Komatsu and Liebherr.
二、Bucket Features
1. Edge steel with extra hardened and toughened wear plates of up to 500 Brinell gives the bucket longer operating life.
2.Bucket shell and side plates of up to 400 Brinell to withstand abrasive wear. Reinforced mounting points where the attachment is installed give less wear.
3.Bucket cutting edges of abrasive-resistant steel of up to 500 Brinell. Replaceable bolt-on wear plates on bucket floor,500 Brinell.
4.Bolt-on edge savers and segments protect the cutting edge from unnecessary wear.
5.Volvo Tooth System with bolt-on or weld-on adapters of up to 515 Brinell gives excellent penetration and less bucket wear.
三. Skid-steer Loader Features
1. The round-back bucket design is stronger with no angled corners. This configuration makes it easier to fill and dump — improving productivity.
2. The ROPS/FOPS structure protects and shields the operator.
3. A total of four exterior lights help to illuminate any job site day or night.
4. A safety system locks lift, tilt and drive systems when the operator leaves the seat, raises the seat bar, or turns off the ignition switch. The brakes are wet-type multiple discs that require no maintenance.
5. Heavy-duty tires are standard — matching the durability of the skid-steer.
6. The rugged all-welded unitized frame is constructed of .375-inch gauge steel for years of productivity. Step bushings are placed in all key pivot areas to increase strength and reduce stress.
7. A wider wheelbase provides for a smooth ride and more balance for stability with heavier loads. A 9-inch ground clearance allows easy maneuverability through mud and other terrain.
8. Hydraulic lines are protected within the loader arm.
9. Mustang features a self-leveling vertical lift.
10. The advanced hydraulic system affords longer service intervals and comes with a sight glass for quick and easy fluid level inspections.
11. A drop-down step makes it convenient to check engine and maintenance points.
四 New Technology of Wheel Loader
1 Introduction
Komatsu-integrated design offers the best value, reliability, and versatility. Hydraulics, powertrain, frame, and all other major components are engineered by Komatsu. You get a machine whose components are designed to work together for higher production, greater reliability, and more versatility. Komatsu’s highly productive, innovative technology, environmentally friendly machines built for the 21st century.
2.High Productivity and Low Fuel Consumption
1Two Mode Engine Power Select System
This wheel loader offers two selectable engine operating modes — Normal and Power. The operator can adjust the machine’s engine performance to match the condition requirements. This system is controlled with a dial on the right side control panel.
(1) Normal Mode: provides maximum fuel efficiency for most general loading conditions.(2)Power Mode: provides maximum power output for hard digging conditions or hill climb operations.
2Automatic Transmission with Four Mode Select System
This operator controlled system allows the selection of manual shifting or three levels of automatic shifting modes (low, medium, and high). The operator can match the machine’s operating requirements with optimum performance efficiency. This system is controlled with a dial on the right side of the control panel.
(1)Manual: The transmission is fixed to the gear speed and selected with the gear shift lever.
(2)Auto Low: Low mode provides smooth gear shifting at low engine speeds suitable for general excavating and loading while offering reduced fuel consumption.
(3)Auto Medium: Medium mode provides gear shifting at mid-range engine speeds required for more aggressive conditions.
(4)Auto High: High mode provides maximum rim pull and fast cycle times by shifting the transmission at high engine speeds. This mode is suitable for hill-climb and load and carry operations.
3.Dual-Speed Hydraulic System
Komatsu’s automatic dual-speed hydraulic system increases operational efficiency and productivity by matching the hydraulic demands to the work conditions.
(1) Digging Operations
Engine power used to operate the switch pump is transferred to the transmission to provide increased rimpull when digging.
(2) Lifting Operations
The switch pump assists the loader pump to provide increased lifting speed and power when lifting and loading.
五、Increased Reliability
1. Komatsu Components
Komatsu manufactures the engine, torque converter, transmission, hydraulic units, and electrical parts on this wheel loader. Komatsu loaders are manufactured with an integrated production system under a strict quality control system.
2. Flat Face-to-Face O-Ring Seals
Flat face-to-face O-ring seals are used to securely seal all hydraulic hose connections and prevent oil leakage.
3.Cylinder Buffer Rings
Buffer rings are installed to the head-side of the all-hydraulic cylinders to lower the load on the rod seals, prolong cylinder life by 30% and maximize overall reliability.
4. Wet multi-disc brakes and fully hydraulic braking system
The wet disc service and parking brakes are fully sealed and adjustment-free to reduce contamination, wear and maintenance. Added reliability is designed into the braking system by the use of two independent hydraulic circuits providing hydraulic backup should one of the circuits fail. If the brake oil pressure drops, a warning lamp flashes and an alarm sounds intermittently. If the brake pressure continues to drop, the parking brake is automatically applied providing a double safety system.
5. High-Rigidity Frames
The front and rear frames along with the loader linkage have high rigidity to withstand repeated twisting and bending loads to the loader body and linkage. Both the upper and lower center pivot bearings use tapered roller bearings for increased durability.
裝載機
一、基本概念.
裝載機是一種主要用于向另一種機械(自卸車、輸送皮帶、鐵路運輸車輛等)“裝載”物料的建設機械(工程車輛)設備。裝載機主要用于向卡車裝載物料,以及鋪設管道、清理碎石和挖土等工作。作為挖土作業(yè)裝載機不是最有效的機械,與挖掘機不同,裝載機不適用于輪胎支承面以下較深處的挖掘作業(yè)。裝載機的深底鏟斗一般可裝載3~6立方米的土壤。鏟斗前置裝載機的斗容量遠大于挖掘裝載機的斗容量。裝載機不屬于鏟土運輸機械,因其主要用途并非土方運輸。
盡管履帶式裝載機是普遍的,但與大多數推土機不同,大多數裝載機是輪式的而并非履帶式。履帶式裝載機適用于棱角銳利的建筑材料會破壞橡膠輪胎的場合,或者在松軟泥濘道路上的作業(yè)。輪式裝載機具有良好的機動性和較高的工作速度,并且不像履帶那樣破壞鋪裝路面,但其所能提供的牽引力較小。
與安裝前置鏟斗的標準拖拉機不同,許多大型裝載機不使用汽車轉向機構。取而代之,它們通過液壓驅動的安裝于前、后橋之間的轉向鉸接裝置轉向。這種轉向稱為“鉸接轉向”,它可使前橋固定,并使其承受更大的重量。對于一定的軸距鉸接轉向提供了較好的機動性。由于前輪與工作裝置繞同一車軸旋轉,駕駛員在使機械定位后可使鏟斗沿弧線“轉向”,這一點是實用的。
裝載機的工作裝置可以是更換式的或者是固定安裝。鏟斗常??捎闷渌b置或工具更換,例如,許多裝載機可以安裝叉車工裝提升重型貨物或者裝運集裝箱,裝備液壓開啟式“蛤殼”型鏟斗可以使裝載機像推土機或鏟運機一樣作業(yè)。
在各種建筑工地上裝載機也經常用來近距離轉運建筑材料,例如磚塊、管材、鋼筋、各種挖掘工具等。借助鏟斗或除雪鏟,裝載機也用于除雪作業(yè),但通常使用除雪裝置。它們用來清除街道、公路和停車場上的積雪。有時用裝載機將積雪裝載到自卸車上進行運輸。
近20年來,特別是在城市建設工程和小型土方運輸工程中,裝載機獲得了普遍的應用。許多工程車輛制造商可生產多種類型的裝載機,其中最知名的有約翰迪爾、卡特彼勒、凱斯、沃爾沃、小松和利勃海爾等品牌。
二、鏟斗特點
1.鏟斗棱邊為超硬耐磨鋼板,布氏硬度達到500,具有較長的使用壽命。
2.鏟斗殼體與側板的布氏硬度達400,以抵抗磨料磨損。經強化處理的附件安裝鉸點減少了磨損。
3.鏟斗切削刀刃為抗磨料磨損鋼材,布氏硬度達500。鏟斗底板上安裝有耐磨襯板,由螺栓緊固可更換,布氏硬度為500。
4.螺栓緊固的邊緣節(jié)省塊和分段防止了切削刃的不必要磨損。
5.沃爾沃斗齒系統(tǒng)配備有螺栓緊固型或焊接型連接器,布氏硬度達515,具有最佳的插入深度和較小的磨損。
三、輪式裝載機特點
1. 圓弧底鏟斗設計更加堅固,沒有死角。這種結構使鏟斗更加容易裝載和傾卸物料,從而提高了生產率。
2. 防傾翻/防落物駕駛室結構保護了駕駛員的安全。
3.四個外部照明燈設置可在白天或夜晚照亮施工現場。
4.當駕駛員離開座椅、提起座椅橫桿或者關閉啟動開關時,安全系統(tǒng)將鎖定提升、傾翻和驅動系統(tǒng)。
5. 使用重型標準輪胎,適應滑移轉向的耐久性要求。
6. 全焊接整體車架由0.375英寸工具鋼建造,堅固耐用,滿足長期生產能力要求。重要樞軸均采用階梯襯套,以便增加強度和減小應力。
7. 較寬的軸距保證了平穩(wěn)行駛,重載作業(yè)更加穩(wěn)定。
8.液壓管路設置于裝載機動臂內部受到保護。
9. 野馬牌裝載機的特點是具有自找平垂直提升特性。
10. 先進的液壓系統(tǒng)可提供較長的工作時間,并配置了玻璃液面計,以便于檢查液壓油面高度。
11. 下落式臺階設置便于發(fā)動機和保養(yǎng)點的檢查。
四、輪式裝載機新技術
1. 簡介
小松集成設計可獲得最大的價值、最高的可靠性與多功能性。液壓系統(tǒng)、傳動裝置、機架等主要部件均由小松制造。機械部件通過設計使其共同協(xié)調工作,以獲得更大的生產能力、更高的可靠性和更多的功能。小松的高生產率、技術創(chuàng)新與環(huán)境友好型機械產品為21世紀而制造。
2.高生產率于低消耗率
1雙模式發(fā)動機功率選擇系統(tǒng)
本輪式裝載機設置了兩個可選發(fā)動機工作模式——正常與動力工作模式。駕駛員可以調節(jié)機器發(fā)動機特性,使其與工況要求相匹配。這一調節(jié)系統(tǒng)用右控制臺上的旋鈕進行控制。
(1) 正常工作模式:在大多數負載條件下提供最大的燃油效率。
(2) 動力工作模式:在堅硬土壤挖掘條件下或在爬坡行駛時提供最大的動力輸出。
2四工作模式自動變速箱
這一由駕駛員控制的系統(tǒng)允許其進行人力換擋或三級(低、中、高)自動換擋模式選擇。駕駛員能夠使作業(yè)要求與最佳性能相匹配。這一系統(tǒng)由控制臺上右邊的旋鈕進行控制。
(1)人力換擋模式:變速箱齒輪速度固定并通過變速桿進行選擇。
(2)自動低檔模式:抵擋模式保證發(fā)動機低速工況下的平穩(wěn)換擋,適用于普通鏟裝作業(yè),具有較低的燃油消耗。
(3)自動中檔模式:提供發(fā)動機中速范圍換擋操作,適用于更加主動的作業(yè)工況。
(4)自動高檔模式:提供發(fā)動機高速工況下的換擋操作,可產生最大的鏟掘力與快速的作業(yè)循環(huán)。這一模式適用于爬坡、鏟裝與轉運的循環(huán)作業(yè)。
3.雙速液壓系統(tǒng)
小松自動雙速液壓系統(tǒng)通過使液壓需求與工況相匹配提高了作業(yè)效率和生產率。
(1) 鏟裝作業(yè)
鏟裝作業(yè)時,用來驅動轉換泵的發(fā)動機功率輸入變速箱以增加鏟掘力。
(2) 提升作業(yè)
提升裝載作業(yè)時,轉換泵輔助裝載機主泵以增加提升速度和功率。
五、提高可靠性
1. 主要部件
該輪式裝載機上小松制造了發(fā)動機、變矩器、液壓裝置和電器元件。小松裝載機制造采用了嚴格質量控制下的集成生產系統(tǒng)。
2.扁平面對面O型圈密封
對所有液壓軟管連接采用扁平面對面O型圈進行安全密封,以防液壓油泄露。
3. 液壓缸緩沖密封圈
緩沖密封圈安裝在全液壓油缸的頭部以降低推桿密封載荷,可延長液壓缸壽命30%并使總可靠性最大。
4. 濕式多片制動器與全液壓制動系統(tǒng)
行車與停車濕式盤式制動器完全密封并無需調節(jié),從而減少了污染、磨損和維護。在制動系統(tǒng)中采用兩個獨立液壓回路,作為當某一液壓回路發(fā)生故障時的貯備,從而增加了系統(tǒng)的可靠性。當制動壓力降低時,報警燈閃爍,報警器間歇鳴叫。如果制動壓力持續(xù)降低,停車制動器將自動啟動,形成雙安全系統(tǒng)。
5. 大剛度車架
前、后車架及裝載機鉸接機構具有較大的剛度,以抵抗重復扭轉與彎曲載荷對裝載機機身和鉸接機構的作用。上、下中心樞軸軸承均采用圓錐滾子軸承以提高壽命。
13
大學
畢 業(yè) 論 文(設計)
題 目: 汽車裝載機設計
姓 名:
學 院:
專 業(yè):
班 級:
學 號:
指導教師:
2013年 6 月 10 日
II
畢業(yè)論文(設計)誠信聲明
本人聲明:所呈交的畢業(yè)論文(設計)是在導師指導下進行的研究工作及取得的研究成果,論文中引用他人的文獻、數據、圖表、資料均已作明確標注,論文中的結論和成果為本人獨立完成,真實可靠,不包含他人成果及已獲得青島農業(yè)大學或其他教育機構的學位或證書使用過的材料。與我一同工作的同志對本研究所做的任何貢獻均已在論文中作了明確的說明并表示了謝意。
論文(設計)作者簽名: 日期: 年 月 日
畢業(yè)論文(設計)版權使用授權書
本畢業(yè)論文(設計)作者同意學校保留并向國家有關部門或機構送交論文(設計)的復印件和電子版,允許論文(設計)被查閱和借閱。本人授權青島農業(yè)大學可以將本畢業(yè)論文(設計)全部或部分內容編入有關數據庫進行檢索,可以采用影印、縮印或掃描等復制手段保存和匯編本畢業(yè)論文(設計)。本人離校后發(fā)表或使用該畢業(yè)論文(設計)或與該論文(設計)直接相關的學術論文或成果時,單位署名為青島農業(yè)大學。
論文(設計)作者簽名: 日期: 年 月 日
指 導 教 師 簽 名: 日期: 年 月 日
目 錄
摘要 I
Abstract II
1緒 論 1
1.1研究目的與意義 1
1.2國內外發(fā)展現狀 2
2設計方案 4
2.1設計要求 4
2.2輪式裝載機總體參數的確定 4
2.3鏟斗結構、形狀的確定 5
2.4 工作裝置連桿機構的選擇 6
3鏟斗的設計 10
3.1裝載機阻力的計算 10
3.2 鏟斗基本參數的確定 12
4 工作連桿裝置的設計 16
4.1 圖解法設計尺寸參數 16
4.2 工作裝置強度計算 21
4.3工作裝置連接設計 31
5 工作裝置液壓系統(tǒng)設計 37
5.1液壓系統(tǒng)設計要求 37
5.2 液壓系統(tǒng)原理分析 37
5.3 油缸作用力的確定 38
5.4液壓系統(tǒng)設計計算 39
5.5 工作裝置的限位機構 41
6 總結 43
參考文獻 44
致謝 45
汽車裝載機設計
摘要
汽車裝載機是一種廣泛使用的工程機械,可以用來搬運、卸載、鏟裝散裝物料,也可對巖石硬土等進行輕度的挖掘。具有作業(yè)速度快、效率高、機動性好、操作輕便等優(yōu)點,因此普遍應用于公路、鐵路、建筑、水電、礦山、港口以及國防工程的建設中。
裝載機作業(yè)是通過工作裝置的運動來實現的,本次設計主要是針對國產裝載機的工作裝置進行設計,該工作裝置由結構件鏟斗,運動件動臂、搖臂、連桿、液壓系統(tǒng)等組成。鏟斗用來裝卸物料;動臂與舉升油缸來使鏟斗上下移動;轉斗油缸和搖臂、連桿來控制鏟斗的轉動。采用直線形帶斗齒鏟斗,結構簡單,具有良好的平地性能,插入力集中在斗齒上,容易插入縫隙。對連桿機構進行了詳細的設計,包括動臂的一些數據計算以及連桿機構中一些組件的尺寸,以及工作裝置的強度的計算。采用受力分析法進行計算分析,最后進行裝載機工作裝置液壓系統(tǒng)的設計。
關鍵詞:裝載機;工作裝置;鏟斗;連桿機構;動臂
Design of the Auto loader
Abstract
As an engineering machine widely used, auto loader can be used for handling, loading, unloading bulk materials, also for mild mining of rock hard soil. With the advantages of operating speed, high efficiency, good mobility, it is widely used in highway, railway, construction, utilities, ports and mines, construction of national defense construction.
The loader works through the movement of working device, composed of shovel, moving parts, connecting rod, rocker arm and hydraulic system. The shovel is used for loading and unloading materials, which moves up and down by the cooperation between movable arm and lifting cylinder, and the rotating movement of which is realized by the combination of rolling cylinder, rolling arm and connecting rod. The toothed shovel is used, which has the advantages of simple structure, better characteristics to smooth, and easy entering the gap due to the concentrating force on the tip of the shovel. The connecting rod is designed in detailed, involving the calculation of size and force of moving arm and connecting rod as well as the check of strength for key parts. The stress analysis method is used to calculate and analyze, in addition, the hydraulic system is designed in this paper.
Keywords: loader; working device; shovel; connecting rod mechanism; moving arm
47
1緒論
1.1研究目的與意義
裝載機是一種用途非常廣泛的工程機械,它不僅可以進行輕度的鏟掘工作,而且還可以對散狀物料進行鏟運、搬移、裝卸及平整作業(yè),而且若換裝適當的工作裝置,還可以進行平整路基、起重、裝卸木料等原材料。因此它被廣泛用于建筑、鐵路、水電、公路、機場、港口、礦山、碼頭、國防及農田基本建設等工程中。對加快工程建設的速度,減輕工人的勞動強度,提高建設工程的質量、降低工程建設成本具有重要的作用,所以裝載機在全球范圍內不論是在產品類型或是產量方面都得到迅速發(fā)展。
裝載機主要用來裝載、鏟運土和石料等一類散狀物料,也可以對碎石、土層進行適度的鏟掘作業(yè)。如果換對應的工作裝置,還可以完成起重、裝卸、推土等其他物料的作業(yè)。在公路施工中主要用于路基工程的平整,瀝青和土石等原材料的集中、裝載等作業(yè)。由于它具有運轉速度快,行動方便,操作靈敏等優(yōu)點,因而發(fā)展很快,成為基礎設施建設中的主要機械。
近幾年來,隨著我國經濟的快速發(fā)展,挖掘裝載機市場也快速發(fā)展,業(yè)內人士普遍看好裝載機的未來市場發(fā)展。從當前情況分析,我國正處在能源設施、道路交通、水利工程、以及大規(guī)模城市化建設等各方面基礎設施建設的后期,幾年前大量投入使用的高速公路、鐵路等基礎設施,正逐漸進入保養(yǎng)維護期,城市建設也由“大拆大建”逐漸向”精雕細刻”轉變。人們對城市建設道路質量與天然氣管道,自來水管道的維護要求越來越高,這些將超過人力的勞動強度與水平。隨著在建大型工程的先后完工,今后基礎設施的建設將是不斷完善已有的基礎。最近一段時期內大型基礎設施的開建將逐步減少,但改建、修繕、擴建等小型工程將不斷增多,小型的工程機械將在以后的經濟建設中發(fā)揮更大的作用。因此小型的土木工程建設中的人力將逐步由機器替代,這些轉變將由沿海發(fā)達地區(qū)向內陸逐步進行。
裝載機將使機械化的進程逐步推進到工程建設中,逐步的取代人力在工程建設中的勞動;同時其可靠的工作穩(wěn)定性、快捷的裝運方式、靈活的機動性,使其可以取代市政部門現有的不適宜我國市政建設中小型工程的大型工程機械,可以說在我國現階段以及以后的相當長時間中,裝載機在我國現代化的工程建設中將發(fā)揮重要的作用。
1.2國內外發(fā)展現狀
目前我國裝載機行業(yè),產品正在向高技術水平、高質量、高可靠性方向發(fā)展。特別是向高效、節(jié)能、安全、微電子技術、環(huán)保及變量全液壓系統(tǒng)、雙動力模式等方向在快速發(fā)展。同時裝載機類型向大型、小型,特別是大型及多用途,專用型方向發(fā)展。同時性能正在逐步接近世界水平,產品已開始出口到包括歐盟、北美等發(fā)達地區(qū)在內的世界各地。在制造技術方面正在向“精細化”方向發(fā)展。同時,各主要主機制造企業(yè)及主要配套件企業(yè)都致力于發(fā)展更高技術水平的傳動件、液壓件、電氣元件等主要基礎件,我國裝載機的發(fā)展已進入了一個新階段[1]。
美國CAT公司生產的CAT挖掘裝載機系列有416、428、438、438D、442D等十幾種機型,該系列產品的主要特點是采用了負載敏感系統(tǒng),即系統(tǒng)采用了斜盤變量軸由柱塞泵以及帶有梭閥信號反饋的多路閥,泵一閥系統(tǒng)組成了一個信號反饋系統(tǒng)。這個系統(tǒng)具有以下特征:在允許的工作負載范圍內,在閥的操縱開啟的任何位置,均可實現流量的基本穩(wěn)定,而不受負載影響。這樣油泵始終輸出和負載相適應的壓力和流量,而沒有多余的流量溢出,從而保證了合理的功率匹配,并且使液壓油的溫升降低,保證了系統(tǒng)的正常工作。
Case工廠的挖掘裝載機有580L、580Super、580SuperL、590Super等十幾種機型,其產品以定量系統(tǒng)為主,580Super型挖掘裝載機是該公司的關鍵產品,其特點是多用途、易保養(yǎng)、安全、舒適;底盤為整體式,有可卸挖斗用、軸向調整挖斗用和裝載用等三種底盤;裝備了前、后各四檔的動力變速箱,且允許在全功率時改變車輛的行駛方向;回轉油缸的直徑加大,改善和提高了挖掘性能,有兩輪或四輪驅動供選用[2]。
將鏟斗的回轉半徑尺視作基本參數,鏟斗尺寸通過多個系數計算而得的設計計算方法有一定的缺陷。提出的新設計方法以能反應鏟斗形狀的參數為基本參數來設計鏟斗幾何形狀,該設計方法能直觀反映基本參數對鏟斗尺寸的影響,有助于利用微機進行輔助設計[3]。
用仿生方法提出鏟斗積土清除裝置, 并對裝置的運動與受力進行了分析,給出機構優(yōu)化設計方案。經模型與實型試驗證明此裝置清土效果好,可提高作業(yè)生產率20%。
裝載機在鏟裝粘性土質時,鏟斗卸載時粘性土壤積附于鏟斗斗底,使卸載不徹底,影響裝載機的作業(yè)生產率。據統(tǒng)計鏟斗內粘附積土可達額定鏟裝量的25%,可降低作業(yè)生產率達40%。如果能在鏟裝過程中,及時有效地清除斗底粘附積土,追求鏟斗容量的最大化,將大大提高鏟裝工作效率。
裝載機工作裝置是裝載機鏟裝物料的裝置,它的結構和性能直接影響整機的工作尺寸和性能參數,合理的工作裝置將對裝載機的工作負荷、動力與運動特性、生產效率等直接產生影響,因此在裝載機的設計中工作裝置的設計將是設計中的重點,反轉六桿機構是裝載機工作裝置中最為常用的機構[4]。
目前裝載機工作裝置連桿的設計方法,無非是因循一般連桿機構的位置綜合,側重考慮平移性、卸料性、少考慮放平性,抓了卸料性與平移性的矛盾,也抓了卸料性與動力性的矛盾,而疏漏了卸料性與放平性這對矛盾,這是值得在今后的設計和研究中去進一步尋求解決的。
通過建立幾種不同型式鏟斗容量計算的統(tǒng)一數學模型,推導出鏟斗容量的精確計算公式,利用復合形法對鏟斗結構參數進行了優(yōu)化設計,通過可視化顯示設計結果,為準確計算斗容及合理設計鏟斗結構提供了理論基礎。
對輪式裝載機工作裝置轉斗六連桿機構鉸點位置的設計傳統(tǒng)的方法是類比試湊法。這種方法在設計過程中盲目性較大,設計效率較低,效果較差,難于求得理想方法。采用優(yōu)化理論借助于計算機輔助設計,可以提高裝載機工作裝置設計質量和效率。因此,進行了裝載機工作裝置轉斗六連桿機構運動學分析,考慮了各類約束,建立了真實性較高的數學模型,并選擇了外點法進行優(yōu)化計算,對實例的計算和分析,驗證了該方法的正確性[5]。
未來10年,我國基礎設施建設仍將大規(guī)模發(fā)展,對裝載機的需求仍將不斷增長。由于工程量大、投資面廣、工程標準高、時間緊迫。施工單位在追求施工效率和成本的基礎上,對設備運行的安全性、可靠性也越來越看重,因而對裝載機產品的數量與質量都提出了更高的要求。中國裝載機行業(yè)市場競爭激烈。只有深入了解裝載機行業(yè)的現狀,密切關注其發(fā)展動態(tài),并以此作為新產品研發(fā)的方向,這樣才能使裝載機制造企業(yè)在激烈的市場競爭中立于不敗之地。
2設計方案
2.1設計要求
充分了解汽車裝載機的鏟斗類型與結構、工作裝置傳動機構的優(yōu)缺點,設計出一種額定載重為3000kg,額定鏟斗容量為2m3的汽車裝載機。
2.2輪式裝載機總體參數的確定
輪式裝載機的總體參數包括裝載機的基本尺寸參數和主要性能參數?;境叽鐓蛋ㄍ庑纬叽纭⑤喬コ叽?、軸距、輪距等;性能參數包括裝載機自重、發(fā)動機功率、鏟斗容量、額定載重、動臂提升時間、鏟斗卸料時間、最大卸載高度及最大卸載距離等。
表2-1 最初設計參數
序號 基本參數名稱 單位 設計尺寸
1 額定斗容量 m3 2
2 額定載重量 kg 3000
3 最大卸載高度 mm 2900
4 對應卸載距離 mm 1250
5 輪距 mm 1850
6 軸距 mm 2925
7 功率 kW 85
8 動臂提升時間 s 5
9 鏟斗卸料時間 s 1.5
10 外形尺寸 mm 7125×2440×2849
(長×寬×高)
11 裝載機自重 kg 9500
2.3鏟斗結構、形狀的確定
2.3.1 鏟斗介紹
裝載機的工作裝置主要是鏟斗與連桿機構組成,鏟斗作為工作裝置的執(zhí)行構件直接與物料接觸,是裝、運、卸的工具,工作時裝載機將它被推壓插入料堆鏟取物料,要承受較大的阻力和較強的磨損,因此設計出鏟斗的質量對裝載機的工作質量有很大的影響。所以鏟斗的設計就是根據裝載機的主要用途和作業(yè)條件,從而減少插入阻力,掘起阻力及提高生產率,同時合理的選擇鏟斗的幾何形狀和尺寸。
2.3.2 鏟斗的結構形式
鏟斗通常用耐磨、低碳、高強度鋼板焊接而成。由斗后壁、斗底、擋板、護板、耐磨板、角板、側壁切削刃、切削刃、支角組成。
因為鏟斗與物料直接接觸,尤其是鏟裝巖石、砂石等堅硬物料時,斗壁與斗前緣承受較大阻力磨損較大,因此,這兩部位采用堆焊硬質合金或耐磨的高錳鋼等優(yōu)質材料。
本次設計采用堆焊TDP-1(35)型合金,硬度HR(35以上),支角、耐磨板、加強角板和側切削刃均由高強度耐磨板材料制造,其中支角和耐磨板是易換件,以提高鏟斗的使用壽命。鏟斗前緣的斗齒是用ZG13Mn鑄成型斗齒或65Mn鍛制后熱處理,由于斗齒磨損較快,磨損達到一定程度時要易于更換。
輪式裝載機的鏟斗斷面形狀一般為“U”形,用鋼板焊接而成。常見鏟斗結構如圖2-1所示。
(a)直線形斗刃鏟斗 (b)V形斗刃鏟斗 (c)直線形帶齒鏟斗 (d)弧形帶齒鏟斗
圖2-1 常見鏟斗結構
鏟斗由斗底、側壁、斗刃及后壁等部分組成,如圖2-2所示。
圖2-2輪式裝載機鏟斗結構
1—防滋板; 2—連接耳; 3—斗后壁.
4—斗前壁; 5—斗側壁; 6—切削刃;
7—斗齒; 8—斗側刃
本次設計鏟斗采用直線形帶斗齒的切削刃如圖2-1(d)所示,其特點是結構簡單,適于鏟裝較松散的物料,具有良好的平地性能,帶有斗齒的鏟斗在鏟斗插入、料堆時,減少刀刃與料堆的作用面積,使插入力集中在斗齒上,容易插入縫隙。
2.4 工作裝置連桿機構的選擇
2.4.1 輪式裝載機工作裝置設計要求
1. 基本要求
設計出的裝載機應具有較強的作業(yè)能力,插入工況時阻力要小,鏟掘料堆的鏟掘力較大。工作裝置的各構件具有良好的受力狀態(tài),較長的工作壽命。尺寸和結構能夠適應不同的生產條件,較高的工作效率,整體結構簡單緊湊,制造及維修容易,操作使用方便。
2.特殊要求
①保證必要的卸載距離、卸載高度和卸載角。輪式裝載機要求鏟斗從運輸工況至最高位置之間的任一高度都能卸載干凈,因此,鏟斗各瞬時的卸載角都> 45°。根據設計任務書中的規(guī)定,鏟斗在最高位置卸載時,最大卸載高度為2950㎜,卸載距離為1300㎜。
②鏟斗能自動放平。鏟斗在最高位置卸載后,轉斗油缸閉鎖,動臂下放,鏟斗能自動變成插入工況的功能成為“鏟斗自動放平”。
③鏟斗由運輸工況被舉升到最高卸載位置的過程中,為使物料不易從鏟斗中撒出,鏟斗應作“平移運動”。從不易撒料這一目的出發(fā),并非要絕對平動,只要在這一過程中把鏟斗的傾角控制在一定范圍內就可以,設計時一般控制在10°以內。
④盡量減小工作機構的高度、長度、前懸(即工作機構重心至整機重心的距離),以提高裝載機在各種工況下的平穩(wěn)性和增加司機的視野。
⑤輪式裝載機的工作機構屬于連桿機構,在設計過程中要防止各個工況出現構件相互干擾、“死點”、“自鎖”和“機構撕裂”等現象;各處傳動角不得小于10°;在滿足各項工作性能的前提下,盡可能使機構倍力系數增加。
2.4.2 工作裝置連桿機構類型的選擇
綜合國內、外輪式裝載機的工作裝置的形式,主要有七種類型的連桿機構。按輸入桿和輸出桿的轉向是否相同又分為正傳和反轉連桿機構;按工作機構的構件數不同,可分為三桿、四桿、五桿、六桿和八桿連桿機構。
1、動臂可伸縮式三桿機構
動臂借助油缸可以進行收縮是此種機構相比于以下六種機構最大的特點。本種機構由動臂的伸縮來實現鏟斗插入料堆,這樣就解決了靠機器的行進來實現插入工況嚴重磨損輪胎的問題;卸載工況時可以將動臂伸出,使卸載距離與卸載高度增加;運輸物料時為了減小前懸,可以將動臂縮回,提高裝載機在行進中的平穩(wěn)性。此種機構的缺點是具有復雜的結構,不能自動放平鏟斗。
2、正轉四桿機構
此種連桿機構是7種之中最為簡單的一種,四桿機構易于實現鏟斗的平動舉升,具有較小的前懸。缺點是難以設計出較大倍力系數的連桿系統(tǒng),且轉斗油缸由小腔進油,輸出力較小,因此轉斗油缸活塞行程較大,油缸尺寸?。欢以谛遁d時鏟斗斗底同活塞桿容易發(fā)生相碰,得到較小的卸載角。為了兩者之間不發(fā)生碰撞,需要把鏟斗斗底制造成凹狀,這樣就使斗容縮小,制造困難增加,鏟斗的自動放平也不能實現。
3、正轉五桿機構
為了避免正轉四桿機構在卸載物料時鏟斗斗底易與活塞桿發(fā)生碰撞的缺陷,在鏟斗斗底與活塞桿之間增設一根短連桿,這樣就使得正傳四桿機構轉變?yōu)檎D五桿機構。鏟斗鏟取物料時,活塞桿與短連桿在鏟斗自重力和油缸拉力作用下成一條直線,這樣兩桿就如同一桿;鏟斗在卸載時短連桿與活塞桿之間發(fā)生相對轉動,使活塞桿與鏟斗斗底不再相碰。正傳四桿機構的其它缺點仍出現在此種機構中。
4、轉斗油缸后置式反轉六桿機構
此種機構與其它結構相比有如下優(yōu)點:a.結構非常緊湊,前懸較小,司機具有較好的視野;b.合理的確定各構件尺寸,不僅能提高鏟斗的平動性能,而且還可以實現鏟斗的自動放平;c.連桿系統(tǒng)的倍力系數能設計成較大值,轉斗油缸大腔進油時翻轉鏟斗,可以使掘起力增大。缺點是連桿和搖臂布置在前橋與鏟斗之間的狹小空間,各構件之間容易發(fā)生干涉。
5、轉斗油缸前置式正轉六桿機構
此機構的轉斗油缸直接與搖臂、鏟斗相連,正轉六桿機構由兩個相互平行的四桿機構組成,因此它可以提高鏟斗的平動性能。與八桿機構相比結構簡單,司機可以獲得更好的視野。缺點是轉動鏟斗時油缸由小腔進油,掘起力較??;機構的傳動比較小,使轉斗油缸行程增大,油缸加長,因此卸載速度比八桿機構??;而且前置轉斗油缸,使工作機構前懸增大,影響整機平衡性和行駛的穩(wěn)定性;鏟斗的自動放平不能實現。
6、轉斗油缸后置式正轉六桿機構
后置轉斗油缸與前置油缸相比,活塞行程較短、傳動比較大、前懸較大;可能使搖臂、動臂、連桿、轉斗油缸在位于同一平面內,使工作結構簡化,同樣使鉸銷與動臂的受力狀態(tài)有了改善。缺點是轉斗油缸和車架的鉸接點位置較高,司機不能獲得較好的視野;翻轉鏟斗時由油缸小腔進油,掘起阻力較小,為了增大掘起力,需要加大轉斗油缸直徑或提高液壓系統(tǒng)壓力,如此就會使質量增加。
7、正轉八桿機構
此機構在轉斗油缸大腔進油時轉斗鏟取,所以掘起力較大;各構件尺寸配置合理時,鏟斗具有較好的舉升平動性能;連桿系統(tǒng)具有較大的傳動比,使鏟斗具有較大的卸載速度與卸載角,使鏟斗卸載速度增加、卸載較完全;由于傳動比大,可以在一定范圍內減小連桿系統(tǒng)的尺寸,以使司機可以獲得更好的視野,但是一定要在適當范圍內,否則連桿系統(tǒng)傳動比較小時,影響掘起力發(fā)揮。該機構結構較復雜,不易使鏟斗自動放平是該種機構的主要缺點。
綜上所述,轉斗油缸后置式反轉六桿機構具有較多優(yōu)點,可以最大限度的滿足裝載機的鏟、裝、卸的功能要求,因此反轉六桿機構在裝載機的工作裝置中廣泛使用[6]。
反轉六桿工作機構簡圖如圖2-3所示,它由轉斗機構和動臂舉升機構兩個部分組成。
圖2-3 反轉六桿機構五種工況運動示意圖
3鏟斗的設計
3.1裝載機阻力的計算
裝載機的工作阻力是多種阻力的合力。由于物料性質和工作機構工作方式的不同,工作阻力有不同的計算方法,工作阻力主要是:鏟斗插入料堆時的插入力;動臂提升時的鏟起力。
3.1.1插入阻力
插入阻力就是鏟斗插人料堆時,料堆對鏟斗的反作用力如圖3-1所示。插人阻力由鏟斗底外表面和物料的摩擦阻力組成,側壁內表面、鏟斗底與物料的摩擦阻力,物料對兩側斗壁的切削刃和鏟斗前切削刃阻力。這些阻力與鏟斗的結構形狀、鏟斗插人料堆的深度、料堆高度、物料的種類等有關。計算上述阻力比較困難,一般按以下經驗公式來計算總插人阻力。
圖3-1料堆對鏟斗的反作用力
公式(3-1)
—鏟斗插入阻力(N);
—被鏟掘物料的塊度及松散程度影響系數;對于小塊物料(碎石和沙礫)
—物料種類影響系數;同理取
—料堆高度影響系數;其值取中間值
—鏟斗形狀系數,一般在1.1~1.8之間,對于前刃不帶齒的斗,取較大值,本機是帶 齒的斗且較大,則取
—鏟斗插入料堆深度(cm),在一次鏟掘法時,取等于0.7~0.8斗底長度,在配合鏟掘法 時,取等于0.25~0.35斗底的長度,取mm=47.84cm
—鏟斗寬度 (cm)。cm
則有,,,,,
代入式3-1
=45941.78N
3.1.2掘起阻力
掘起阻力是指鏟斗插入料堆適當深度后,提升油缸工作舉起動臂時,料堆對鏟斗的反作用力。鏟斗插入料堆深度后,用動臂提舉鏟斗,鏟起阻力由鏟斗寬度和鏟斗斗底插入科堆深度的矩形面積上的物料來確定。
鏟起阻力同樣受到物料的濕度、溫度、塊度、容積比重、松散性,物料之間及物料與斗壁摩擦之間的影響。鏟斗剛剛開始提升時的鏟起阻力最大,鏟起阻力隨著動臂的提升逐漸減小。
鏟斗開始提升時的鏟起阻力可按下式確定:
公式(3-2) ——鏟斗插入料堆深度(m);
——鏟斗寬度(m);
——鏟斗開始提升時物科的剪切阻力(KN/m),取值為25KN/m;
3.2 鏟斗基本參數的確定
設計過程中,將鏟斗的回轉半徑R(即鏟斗與動臂鉸接點至切削刃之間的距離)作為基本參數,鏟斗的其他參數則作為R的函數。
R是鏟斗的回轉半徑,不僅鏟斗底壁的長度受其直接影響,而且斗容的大小與轉斗時掘起力也受其直接影響,所以它是一個與整機總體有關的參數。鏟斗的回轉半徑尺寸可按式3-5確定。
鏟斗寬度的確定。如果鏟斗寬度小于裝載機輪胎外側的距離,那么裝載機外側與輪胎會同物料產生摩擦,使裝載機的前進阻力增大,因此鏟斗寬度應大于裝載機輪胎外側的距離,每側超出75cm,因此鏟斗寬度為2440mm。
圖3-2 鏟斗的尺寸參數
3.2.1計算回轉半徑R
由圖3-5可以看出,鏟斗橫截面積
公式(3-3)
而鏟斗幾何斗容
公式(3-4)
若斗容量為額定容量,則回轉半徑R為
公式(3-5)
—設計任務書給的鏟斗額定容量,;
—鏟斗內側寬度,m,mm
—鏟斗斗底長度系數,,取1.45;
—后斗壁長度系數,,取1.15;
—擋板高度系數 ,,取0.13
—圓弧半徑系數,,取0.36;
—擋板與后斗壁間夾角,,取;
—斗底與后斗壁間夾角(即張開角),,??;
公式(3-6)
為額定斗容與平裝斗容的比例系數,取1.2
綜上所述,代入數據計算的
鏟斗的斷面形狀參數:
鏟斗側壁切削刃相對于斗底的傾角,此處??;
在選擇時使側壁切削刃與擋板的夾角為,切削刃的削尖角
鏟斗中部切削刃與背板上緣之間的距離:
公式(3-7)
=1.81m
擋板高度
公式(3-8) 鏟斗圓弧半徑
公式(3-9)鏟斗上的動臂鉸銷距斗底的高度
公式(3-10)
后斗壁長度
公式(3-11) 斗底長度
公式(3-12)
3.2.2 斗容的計算
鏟斗容量是裝載機的總體參數之一,鏟斗幾何尺寸初步確定后,應立即進行斗容計算,以檢驗其是否滿足給定的斗容要求,若計算值與要求值不符,則需修改有關尺寸,直至滿足要求為止。如圖3-3所示:
圖 3-3斗容的計算
1平裝斗容:無擋板鏟斗的計算:
公式(3-13)
對于裝有擋板的鏟斗:
公式(3-14)
2額定斗容:鏟斗堆裝的額定斗容是指斗內堆裝物料的四邊坡度均為1:2。
對于無擋板鏟斗的額定斗容:
公式(3-15) 對于有擋板鏟斗的額定斗容:
公式(3-16) c--物料的堆積高度,為物料按2:1的坡度角堆裝的體積,c可有作圖法確定,即由料堆頂點作直線垂直于刮平線(刀刃與擋板高度連線),如圖3-4所示。
圖3-4參數c的確定方法
得
代入式3-16得:
斗容誤差的計算:
公式(3-17) 所以設計的鏟斗符合要求。
4 工作連桿裝置的設計
4.1 圖解法設計尺寸參數
圖解法是設計連桿系統(tǒng)參數最有效的方法,因此本設計中也選擇用圖解法來解決設計中遇到的參數問題。圖解法是在初步確定了鏟斗幾何尺寸、卸載角、最小卸載距離、最大卸載高度等整機主要參數后進行的,通過在坐標圖上確定工況Ⅱ時工作機構的9個鉸接點的位置來實現。
4.1.1 動臂與鏟斗搖臂、機架的三個鉸接點的確定
1 確定坐標系,畫鏟斗圖
如圖4-1所示,選取直角坐標系XOY,并選定長度比例尺。把已設計好的鏟斗橫截面圖畫在坐標系里,斗尖對準坐標原點O,斗前壁與X軸呈4°前傾角。此為鏟斗插入料堆時的位置,即工況Ⅰ。
圖 4-1 動臂上A、G兩點的設計簡圖
2 確定動臂與鏟斗的鉸接點G
由于G點的X坐標值越小,轉斗崛起力就越大,所以G點靠近O點是有利的,但它受斗底和最小離地高度的限制,不能隨意減??;而G點的Y坐標值增大時,鏟斗在料堆中的鏟取面積增大,裝的物料多,但縮小了G點與連桿鏟斗鉸接點F的距離,使崛起力下降。
綜合考慮各種因素的影響,設計時,一般根據坐標圖上工況Ⅰ時的鏟斗實際情況,在保證G點Y軸的坐標值YG=250~350mm和X軸坐標值盡可能小的而且不與斗底干涉的前提下,我取G點的坐標為(1100,280)。
3 確定動臂與機架的鉸接點A
①以G點為圓心,使鏟斗順時針轉動,至鏟斗斗口與X軸平行為止,即工況Ⅱ。
②把已選定的輪胎外廓畫在坐標圖上。應使輪胎前緣與工況Ⅱ時的鏟斗后壁的間隙盡量小些。履帶中心Z的坐標值應等于履帶的工作半徑。
公式(4-1)
式中:—Z點的Y坐標值,mm;
—輪輞直徑,mm;
—輪胎寬度,mm;
—輪胎斷面高度與寬度之比;
—輪胎變形系數。
查文獻得,,,,。代入上式解得:。
③根據給定的最大卸載高度,最小卸載距離,以及卸載角,畫出鏟斗在最高位置卸載時的位置圖,即工況Ⅳ,令此時斗尖為,G點位置為。
④以為圓心,順時針旋轉鏟斗,使鏟斗口與X軸平行,即得到鏟斗最高位置圖,即工況Ⅲ。
⑤連接GG`并作垂直平分線。因為G和G`點同在以A點為圓心,動臂AG長為半徑的圓弧上,所以A點必在的垂直平分線上。
A點在垂直平分線的位置應盡量低些,一般取在前輪右上方,與前軸心水平距離為軸距的1/3~1/2處。因此,我取A點坐標為(3388,2177)。
4.1.2 動臂與搖臂鉸接點的確定
動臂與搖臂鉸接點B點的位置是一個十分關鍵的參數,它對連桿機構的傳動比、倍力系數、連桿機構的布置以及轉斗油缸的長度都有很大影響。根據分析與經驗,一般取B點在AG連線的上方,過A點的水平線下方,并在AG的垂直平分線上,并在AG的垂直平分線上左側靠近工況Ⅱ時的鏟斗處。相對于前輪胎,B點在其外廓的左上部。通過作圖,設計出B點坐標為(1704,1471)。
4.1.3 連桿與鏟斗和搖臂的兩個鉸接點的確定
因為G、B兩點已被確定,所以在確定連桿與鏟斗和搖臂的兩個鉸接點F點和E點實際上是為了最終確定與鏟斗相連的四桿機構GFEB的尺寸,如圖4-2所示。
圖4-2 連桿、搖臂、轉斗油缸尺寸設計
確定F、E兩點時,既要考慮對機構的要求,又要注意動力學的要求,同時,還要防止前述各種機構被破壞的現象。
1 按雙搖桿條件設計四桿機構
令GF為最短桿,BG桿為最長桿,即必有
GF+BG>FE+BE 公式(4-2)
如圖4-2所示,若令,,,,,并將式(4-2)不等號兩邊同時除以,經整理上式得下式,即
公式(4-3)
其中值由確定,即。
初步設計時,式(4-3)中各值可按式(4-4)中選取。
此次設計中取 K=0.952,a=467mm,c=868mm,b=855mm。 公式(4-4)
2 確定E點和F點的位置
這兩點位置的確定要綜合考慮如下四點要求:①E點不可與前橋相碰,并且有足夠的最小離地高度;②插入工況時,使EF桿盡量與GF桿垂直,這樣可獲得較大的傳動比角和倍力具體做法如下:
如圖4-3所示,鏟斗取工況Ⅰ。分別以B點和G點為圓心,以c和分別為半徑畫弧,其交點為E;再分別以G點和E點為圓心,a和b半徑畫弧,則其交點必為F。
圖 4-3 連接端部鉸接點設計
作圖所得,在鏟裝工況下,即工況Ⅰ下,E點坐標為(1984,650),F點坐標為(1050,548)。
為了防治機構出現“死點”,“自鎖”或“撕裂”現象,設計時應滿足下列不等式。
工況Ⅱ時: GF+FE>GE 公式(4-5)
工況Ⅳ時: FE+BE>FB 公式(4-6)
檢驗E與F點位置設計:
①工況Ⅱ時,GF=467mm,FE=855mm,GE=1292mm,因此滿足GF+FE>GE。
②工況Ⅳ時,FE=855mm,BE=868mm,FB=1114mm,因此滿足FE+BE>FB。
綜上所得,E點與F點設計位置滿足要求。
4.1.4 轉斗油缸與搖臂和機架的鉸接點的確定
在圖4-3中,如果確定了C點和D點,就最后確定了與機架連接的四桿機構BCDA的尺寸。C點和D點的布置直接影響到鏟斗舉升平動和自動放平性能,對掘起力和動臂舉升阻力的影響都較大。
1、確定C點
從力的傳遞出發(fā),顯然使搖臂BC長一些有利,那樣可以增大轉斗油缸作用力臂,使掘起力相應增大。但加長BC段,必將減小鏟斗和搖臂的轉角比,造成鏟斗轉角難以滿足各個工況的要求,并且使轉斗油缸行程過長。初步設計時,一般取
BC≈(0.7~1.0)BE 公式(4-7)
因此,取BC=0.96,BE=830mm。BC與BE夾角(即搖桿折角)可取∠CBE = 130°~180°,再次取∠CBE=175°,C點運動不與鏟斗干擾。
2、確定D點
轉斗油缸與機架的鉸接點D,是根據鏟斗由工況Ⅱ舉升到工況Ⅲ過程為平動和由工況Ⅳ下降到工況Ⅰ能自動放平這兩大要求來確定的。
如圖4-2所示,當鉸接點G、F(即F2)、E(即E2)、B、C(即C2)被確定后,則鏟斗分別在工況Ⅰ、Ⅱ、Ⅲ、Ⅳ時的C點的位置C1、C2、C3、C4也就唯一的被確定下來。因為鏟斗由工況Ⅱ舉升到工況Ⅲ或由工況Ⅳ下放到工況Ⅰ的運動過程中,轉斗油缸的長度分別保持不變,所以D點必為C2點和C3點連線的垂直平分線與點C1和C4點連線的垂直平分線的交點。
研究證明,D點設計在A點的左下方較好,D的固定坐標為(2965,1913)。
4.1.5動臂舉升油缸與動臂和車架鉸接點的確定
動臂舉升油缸的布置應本著舉臂時工作力矩大、油缸穩(wěn)定性好、構件互不干擾、整機穩(wěn)定性好等原則來確定。綜合考慮這些因素,一般動臂舉升油缸都布置在前橋與前后車架的鉸接點之間的狹窄空間里。
一般動臂舉升油缸與動臂的鉸接點H選定在AG連線附近或上方,并取AHAG/3。因此,取工況Ⅰ時的H坐標為(2441,1405),AH=1237mm。
考慮到聯(lián)合鏟裝工況(邊插入邊舉臂)的需要,在滿足動臂舉升油缸與車架鉸接點M最小離地高度要求的前提下,令工況Ⅰ時AH與MH趨于垂直。這樣可以使鏟斗開始從料堆中提升時阻力距最大,獲得較大的初始工作力矩。
M點往前橋方向靠近是比較有利的。這樣做,可使動臂舉升油缸在動臂整個舉升過程中,舉升工作力臂大小的變化往往較小,即工作力矩變化不大,避免鏟斗舉升最高位置時的舉升力不足,因此此時工作力臂往往較小或最小。
綜上所述,我取M點在A點正下方1383mm處。
經過上述的各步作圖,整個工作裝置連桿機構的尺寸參數設計完畢。為了進一步檢驗鏟斗的平動質量,在工況Ⅱ、Ⅲ之間選擇2個位置進行檢驗鏟斗的轉角,所得結果鏟斗轉較差小于10°,則證明設計合理[7]。
4.2 工作裝置強度計算
4.2.1確定工作裝置的計算位置
裝載機作業(yè)工況不同,工作裝置的受力情況也不一樣。因此,進行工作裝置強度計算時。只要其受力最大時的計算位置,選取工作裝置受力最大的典型工況,來對工作裝置進行強度計算。
通過分析裝載機鏟斗插入料堆、鏟起、提升、卸載等作業(yè)過程可知,裝載機在地面鏟掘物料時,工作裝置的受力最大,所以對裝載機進行受力分析,可選取裝載機在水平地面上鏟斗斗底與地面的夾角為3-5度鏟掘時的鏟取位置作為計算位置,且假設外載荷作用在鏟斗的切削刃上[9]。
4.2.2 工作裝置載荷分析
1、水平受力
裝載機沿水平面運動,工作裝置油缸閉鎖,鏟斗插入料堆,此時認為物料對鏟斗的阻力水平作用在切削刃上,水平力的大小由裝載機的牽引力決定,其最大值按下式計算:
裝載機的最大插入阻力受附著力限制,所以要保證
公式(4-8)
——裝載機自重力;
——附著系數,附著系數一般在0.6—0.85之間,此處取0.75;
——滾動阻力系數,裝載機Ⅰ檔是取0.04,Ⅱ檔是取0.03,此處取0.04。
代入數據得: 即 45941.7866101
即牽引力大于阻力,符合設計要求
2 垂直力的作用工況
鏟斗水平插入料堆足夠深度后,裝載機停止運動,向后轉斗或提升動臂,此時認為掘起阻力垂直作用在切削刃上,且垂直載荷受裝載機的縱向穩(wěn)定性條件的限制,其最大值為:
(N) 公式(4-9)
式中:——裝載機空載時的自重;
——裝載機重心到前輪與地面接觸點的距離;
——垂直力的作用點到前輪與地面接觸點的距離;
代入數據得:
所以:
即起掘力大于阻力,符合設計要求
4.2.3 工作裝置的受力分析
由工作裝置是一個受力較復雜的空間超靜定系統(tǒng),為簡化計算,通常作如下假設:
1在對稱受載工況中,由于工作裝置是一個對稱結構,故兩動臂受的載荷相等。同時略去鏟斗及支撐橫梁對動臂受力與變形的影響,則可取工作裝置結構的一側進行受力分析,其上作用的載荷取相應工況外載荷之半進行計算,即:
公式(4-10)
公式(4-11)
2側連桿機構各構件軸線均假設在同一平面內,所有作用力都通過各桿件斷面彎曲中心,忽略各桿件因不在同一平面內所引起的扭矩,計算時可以用構件的中軸線來代替實際構件。
根據以上假設,就可以將工作裝置這樣一個空間超靜定結構,簡化為一般平面問題進行受力分析。為了分析工作裝置各鉸接點的受力情況,可以選取一種簡單的受力工況進行分析,對于復雜的受力工況,可以簡化為幾種簡單的受力工況的幾何疊加。因此以水平垂直對稱同時作用的工況進行分析。
計算工作裝置各構件受力時,首先以鏟斗為受力分離體,去掉約束以反力代替,然后,根據構件中的連接順序,依次求出各構件的受力。此時,工作裝置各構件的受力簡圖如圖4-4所示,并規(guī)定任何構件中力的符號以拉力為正,壓力為負[11]。
(a)
(b)
圖4-4 工作裝置受力分析
這樣,根據平面靜力學公式可列出工作裝置各構件的靜力學計算平衡方程式如下。
a 對于鏟斗,如圖4-4(a)所示,有
公式(4-12)
=103431.7N
公式(4-13)
=
=
公式(4-14)
=
=
b 連桿EF受力 如圖4-4(a)所示,因連桿為二力構件,所以
PF=PE=103431.7N (受拉力) 公式(4-15)
c 搖臂受力 如圖4-4(a)所示:
公式(4-16)
=
=133471.1N
公式(4-17)
=
=228624.4N
公式(4-18)
=
=
d 動臂受力分析 如圖4-4(b)所示:
公式(4-19)
=
=176766.6N
公式(4-20)
=
=
公式(4-21)
=
=49045.1N
4.2.4 工作裝置的強度校核
在求得工作裝置各主要構件受力的基礎上,計算各構件的內力,并進行危險斷面的強度校核。
a 動臂
在對稱載荷的作用下,動臂可看作是支撐在車架A點和動臂油缸上鉸接點H的雙支點懸臂變截面曲梁。為簡化計算,將動臂主軸線分成GI、IJ、JH、HA等折線段,見圖4-5
圖4-5 動臂內力計算
1)GI段
軸向力 NGI= 公式(4-22)
=
=
剪力 QGI= 公式(4-33)
=
=
彎矩 MI= 公式(4-24)
=Nm
=
2)IJ段
軸向力 NIJ= 公式(4-25)
=N
=
剪力 QIJ= 公式(4-26)
=
=
彎矩 MJ= 公式(4-27)
=
=
3)JH段
軸向力 NJH= 公式(4-28)
=
=
剪力 QJH= 公式(4-29)
=
=
彎矩 MH= 公式(4-30)
=
=
4)HA段
軸向力 NHA= 公式(4-31)
=
=
剪 力 QHA= 公式(4-32)
=
=
彎 矩 MA=0 公式(4-33)
根據所求出的各段內力即可求出內力圖,圖4-6為以對稱水平載荷為例做出的動臂內力圖。
(a)軸力圖 (b)剪力圖 (c)彎矩圖
圖4-6 對稱載荷引起的動臂內力圖
其危險斷面在H點附近為m-m斷面如圖4-5所示。在此斷面上作用有彎曲應力、正應力和剪應力,以其合成力所表示的強度條件為
公式(4-34)
公式(4-35)
把A==50382=
鏈接地址:http://italysoccerbets.com/p-6110844.html