【溫馨提示】====設(shè)計包含CAD圖紙 和 DOC文檔,均可以在線預(yù)覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======課題帶三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預(yù)覽的簡潔性,店家將三維文件夾進行了打包。三維預(yù)覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======詳情可咨詢QQ:1304139763
河北建筑工程學院
畢業(yè)設(shè)計(論文)
課題
名稱
QTZ40塔式起重機總體及起升系統(tǒng)的設(shè)計
系: 機械工程系
專業(yè): 機械設(shè)計制造及其制動化
班級: 機094
姓名: 劉志勇
學號: 2009307428
起迄日期:2013年3月25日~ 2013年 6月21日
設(shè)計(論文)地點: 綜405
指導(dǎo)教師: 李常勝
目錄
第1章 前言·················································································1
1.1塔式起重機概述········································································1
1.2塔式起重機的發(fā)展趨勢································································1
第2章 總體設(shè)計···········································································1
2.1 概述···················································································2
2.2 總體設(shè)計方案的確定··································································2
2.2.1金屬結(jié)構(gòu)···········································································2
2.2.2工作機構(gòu)··········································································19
2.2.3安全保護裝置·····································································26
2.3總體設(shè)計原則······································································· 28
2.3.1整機工作級別································································· 28
2.3.2機構(gòu)工作級別································································· 28
2.3.3主要技術(shù)性能參數(shù)··························································· 29
2.4平衡臂與平衡重的計算·······························································29
2.5起重特性曲線··········································································31
2.6塔機風力計算··········································································32
2.6.1工作工況Ⅰ······································································33
2.6.2工作工況Ⅱ······································································36
2.6.3非工作工況Ⅲ ··································································39
2.7整機的抗傾翻穩(wěn)定性計算····························································41
2.7.1工作工況Ⅰ·······································································42
2.7.2工作工況Ⅱ········································································43
2.7.3非工作工況Ⅲ·····································································44
2.7.4工作工況Ⅳ·······································································45
第3章 起升機構(gòu)的設(shè)計和計算·······················································47
3.1起升機構(gòu)的形式·······································································47
3.2 確定起升機構(gòu)滑輪組倍率···························································49
3.3 鋼絲繩的選擇········································································50
3.4 確定卷筒的尺寸·····································································51
3.5 選擇電動機···········································································52
3.6計算傳動比,確定卷筒直徑·························································53
3.7 校驗卷筒··············································································54
3.8 選擇滑輪··············································································54
3.9 選擇減速器、制動器、聯(lián)軸器······················································55
3.10 電動機及起升機構(gòu)起、制動時間校驗············································58
第4章 吊鉤組的設(shè)計····································································61
4.1 吊鉤組的形式·········································································61
4.2 吊鉤的形式············································································61
4.3 吊鉤計算···············································································62
4.4 吊鉤橫梁計算·········································································64 畢業(yè)設(shè)計小結(jié)··············································································66
參考文獻·····················································································67
摘要
塔式起重機作為建筑施工的主要設(shè)備,在建筑等行業(yè)發(fā)揮著極其重要的作用。塔式起重機屬于臂架型起重機,由于其臂架鉸接在較高的塔身上,且可回轉(zhuǎn),臂架長度較大,結(jié)構(gòu)輕巧、安裝拆卸運輸方便,適于露天作業(yè),因此大多數(shù)用于工業(yè)與民用建筑施工。
塔式起重機是為了滿足高層建筑施工、設(shè)備安裝而設(shè)計的新型起重運輸機械,QTZ40塔式起重機是由建設(shè)部長沙建設(shè)機械研究院設(shè)計的新型建筑用塔式起重機,該機為水平臂架,小車變幅,上回轉(zhuǎn)自升式多用途塔機。
本設(shè)計的題目是固定式QTZ40塔式起重機起升系統(tǒng)的設(shè)計。QTZ40塔式起重機有多種形式,此次設(shè)計的形式為上回轉(zhuǎn)液壓頂升自動加節(jié),可隨著建筑物的升高而升高,固定式高度為30米,在附著狀態(tài)下可達到100米,其工作幅度為40米。
本設(shè)計書主要包括四部分:第一部分主要是對現(xiàn)今國內(nèi)外塔式起重機的發(fā)展現(xiàn)狀、趨勢以及QTZ40塔式起重機特點、應(yīng)用場合,做了一個簡要的概述;第二部分是QTZ40塔式起重機總體方案的選擇及總體設(shè)計計算過程;第三部分是起升機構(gòu)設(shè)計和計算;第四部分是吊鉤組的設(shè)計。
關(guān)鍵詞: QTZ40塔式起重機 起升機構(gòu) 吊鉤組
ABSTRACT
As an important facility, the tower crane plays an important role in construction industry. The tower crane belongs to the arm rack type crane. Its arm is hinged on the high tower body, and it may rotate. It has longer arm, dexterous structure. What’s more, it is easy to be assembled, disassembled and transported. It is suitable for the open-air work and mainly used for industry and civil construction
Tower cranes are to meet high-rise construction building, equipment installation and design as a new type machinery of lifting transport. The QTZ40 tower cranes are new tower cranes designed by Changsha Institute of the Ministry of Construction Machinery used in construction building. The aircraft is horizontal boom, trolley luffing, on the back or decanted from the tower-type multi-purpose machines .
The design topic is the stationary QTZ40 tower crane system and the design of lifting structure. There are many kinds of QTZ40 tower crane. The form of this design is as below. With an upper rotating hydraulic pressure propping system, the machine could add height automatically and thus rise with the building ascension. The stationary type is 30meter high; it could reach the height of 100meters when it is being adhered. Its work scope is 40 meters.
This design book mainly includes four parts. The first part summarizes the present situation and the development tendency of the Tower crane in both our country and abroad, as well as the characteristic and application occasion.The second part is the QTZ500 tower crane overall concept choice and the system design computation process; the third part is the organization design and the computation of lifting mechanism;and the last is the design of the hook group.
KEY WORDS: QTZ40 tower crane lifting mechanism hook group