2019高中數(shù)學 第二章 平面向量 2.3 從速度的倍數(shù)到數(shù)乘向量 2.3.2 平面向量基本定理課件 北師大版必修4.ppt
《2019高中數(shù)學 第二章 平面向量 2.3 從速度的倍數(shù)到數(shù)乘向量 2.3.2 平面向量基本定理課件 北師大版必修4.ppt》由會員分享,可在線閱讀,更多相關《2019高中數(shù)學 第二章 平面向量 2.3 從速度的倍數(shù)到數(shù)乘向量 2.3.2 平面向量基本定理課件 北師大版必修4.ppt(24頁珍藏版)》請在裝配圖網(wǎng)上搜索。
3 2平面向量基本定理 平面向量基本定理如果e1 e2是同一平面內的兩個不共線向量 那么對于這一平面內的任一向量a 存在唯一一對實數(shù) 1 2 使a 1e1 2e2 不共線的向量e1 e2叫作表示這一平面內所有向量的一組基底 做一做1 若a b不共線 且 a b 0 R 則 A a 0 b 0B 0C 0 b 0D a 0 0解析 a與b不共線且 a b 0 只能有 0 答案 B 做一做2 設e1 e2是同一平面內兩個不共線的向量 以下各組向量中不能作為基底的是 e1 e2 e1 2e1 e1 2e2 e2 2e2 解析 由于e1 e2不共線 則e1 2e2不共線 所以 中的向量組都可以作為基底 因為e1與2e1共線 e2與2e2共線 所以 中的向量組都不能作為基底 故填 答案 思考辨析判斷下列說法是否正確 正確的在后面的括號內畫 錯誤的畫 1 基底要求兩個向量不共線且模為1 2 若e1 e2為不共線向量 則e1 e2與e1 e2可構成基底 3 若a與b為不共線向量 且有x1a y1b x2a y2b成立 則一定有x1 x2 且y1 y2 答案 1 2 3 4 探究一 探究二 探究三 思維辨析 對平面向量基本定理的理解 例1 給出下列命題 若向量e1 e2不共線 則空間中的任一向量a均可表示為a 1e1 2e2 1 2 R 若向量e1 e2不共線 則平面內的零向量不能用e1 e2線性表示 若向量e1 e2共線 則平面內任一向量a都不能用e1 e2表示為a 1e1 2e2 1 2 R 的形式 其中不正確命題的序號是 探究一 探究二 探究三 思維辨析 解析 錯誤 當e1 e2不共線時 平面向量可用e1 e2唯一地線性表示 但空間中的向量則不一定 錯誤 零向量也可以用一組基底來線性表示 錯誤 當e1 e2共線時 平面內的有些向量可以表示為 1e1 2e2 1 2 R 的形式 有些向量則不可以 答案 反思感悟平面向量基本定理就是指平面內任一向量均可用平面內的兩個不共線向量線性表示 且表示方法是唯一的 探究一 探究二 探究三 思維辨析 變式訓練1設e1 e2是平面向量的一組基底 則下面四組向量中 不能作為基底的是 A 2e1 e2和e2 e1B 3e1 2e2和4e2 6e1C e1 2e2和e2 2e1D e2和e1 e2解析 B中 3e1 2e2 4e2 6e1 則3e1 2e2與4e2 6e1共線 不能作為基底 答案 B 探究一 探究二 探究三 思維辨析 利用基底表示向量 思路分析 根據(jù)平面向量基本定理 結合向量的線性運算進行逐步分解 探究一 探究二 探究三 思維辨析 探究一 探究二 探究三 思維辨析 反思感悟用一組基底表示向量的注意事項平面內任一向量都可用一組基底來表示 在表示過程中 主要結合向量的線性運算完成這種向量表示 注意以下幾點 1 通常選取有公共點的兩個不共線向量作為基底 2 注意平面向量基本定理的應用 3 注意a b不共線 則0 0 a 0 b是唯一的 4 充分利用首尾相連的向量所表示的等量關系 5 利用同一向量的多種表示方法建立等量關系 也是常用技巧 探究一 探究二 探究三 思維辨析 變式訓練2如圖所示 已知在 ABCD中 E F分別是BC DC邊上的 解 四邊形ABCD是平行四邊形 E F分別是BC DC邊上的中點 探究一 探究二 探究三 思維辨析 平面向量基本定理與線性運算的綜合應用 例3 在 ABC中 思路分析 1 可用平面向量基本定理進行證明 2 可用線性運算以及重心的定義求證 所以等式成立 探究一 探究二 探究三 思維辨析 2 如圖 設E是AB邊的中點 即點M在中線CE上 且是靠近AB邊中點的一個三等分點 因此 M是 ABC的重心 反思感悟在三角形中 中線 重心等與向量的關系非常重要 一些結論的用處非常廣泛 須熟記 例如 在 ABC中 若M是重心 AD BE CF是三條中線 則下列結論都是成立的 探究一 探究二 探究三 思維辨析 A 2B 3C 4D 5 m 3 故選B 答案 B 探究一 探究二 探究三 思維辨析 對兩向量夾角的定義理解不清致誤 錯解90 60 探究一 探究二 探究三 思維辨析 答案90 120 探究一 探究二 探究三 思維辨析 糾錯心得在一個平面圖形中求兩個向量的夾角時 切記不能直接將該平面圖形的某個內角理解為兩個向量的夾角 必須根據(jù)向量的方向 通過平移得出向量的夾角 1 2 3 4 5 1 已知向量e1 e2不共線 實數(shù)x y滿足 3x 4y e1 2x 3y e2 6e1 3e2 則x y的值為 A 3B 3C 0D 2 答案 A 6 1 2 3 4 5 答案 B 6 1 2 3 4 5 A B C D 由平面向量基底的概念知 可構成平面內所有向量的基底 答案 B 6 1 2 3 4 5 答案 A 6 1 2 3 4 5 6 答案 3 1 2 3 4 5 解 設D E F分別是邊BC AC AB邊上的中點 6- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019高中數(shù)學 第二章 平面向量 2.3 從速度的倍數(shù)到數(shù)乘向量 2.3.2 平面向量基本定理課件 北師大版必修4 2019 高中數(shù)學 第二 平面 向量 速度 倍數(shù) 到數(shù)乘 基本 定理 課件 北師大
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-5741380.html