陳四樓礦 240萬噸新井通風安全設計英文原文????????????????????????????????????????????????????????????a, ?, ????????????b,??????????????????b?????????????????????a???????????????????????????????????????????,??????????????????????????????????,????????????????????,???????????????? , ?????????,???????????,????? ,??????????????????? ,?????????? ,?????????,????????????????????????;?????????????????????????,?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????陳四樓礦 240萬噸新井通風安全設計??????????????????????????;????????? ;?????????????????;???????????? ;??????????????????????????Introduction????Fault modeling using integrated geologic/mine planning software????Case study on surface coal mine in Columbia????Conclusions?References??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Sprouls (1988),? Fiscor (2002)?????????????????????????????????????????????EIA, 2004???????????, ????????,????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????陳四樓礦 240萬噸新井通風安全設計?????????????????????????????????????????????????????????????????????????????????????????????,?????????? ,????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????, ???????????????????????????????????????????????????????????????????????????,????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Molinda and Ingram, 1989,? Nelson, 1991,? Greb et al., 2001?????Coolen, 2003?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????,???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????,????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????陳四樓礦 240萬噸新井通風安全設計?????????????????????????Greb (1991),??????????????????????????????????????????????????????????????????????????????????,??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????MineScape? (2004)???????????????????????????????2. Fault modeling using integrated geologic/mine planning softwareFaulting and other geologic structures affect the ways in which a coal seam can be accessed. Poor representation of the deposit geometry can lead to a poor access design, which in turn can lead to necessary adjustments in the field that are not optimal for production. Mine plans need to take into account the vertical superimposition of seams in reverse fault areas to insure that resource assessments provide an accurate accounting of the duplication of seams. Because the rock in the zone around the fault is often sheared, accurately delineating faults on hazard maps helps provide a safe mine design. Discovering that the fault geometry is significantly different from the model prediction during mining can be both a production nightmare and a safety hazard. Commonly, the graphical representation of coal deposits is performed by using Computer Aided Design (CAD) tools. The 3-D design tools have reduced development time and graphics can be generated very quickly. Mining engineers benefit from this progress, as parallel advancements in mining software help them to visualize the complexity and spatial distribution of rock strata parameters, allowing them to make engineering changes, and to test or compare new concepts even before the field action is taken. An overview on visualization in geological modeling and mine planning is given by LeBlanc-Smith et al. (1997), while importance of measuring, understanding and visualising coal characteristics is discussed by Whateley (2002). 陳四樓礦 240萬噸新井通風安全設計Geological, geophysical, geotechnical and topographical field data are collected during the exploration phase of mining. Raw data is verified against a computer dictionary, a list or range of acceptable values, and stored in the relational geologic database. The dictionary is a stored set of validation parameters. In the case of numeric values, it is a range of valid values. In the case of character fields such as lithotype, it is a list of character strings that are considered acceptable values. The relational database is used to assemble and organize a range of parameters and information needed to characterize the coal deposit. The principles of Open Database Connectivity (ODBC) provide an environment in which various blocks of data can be either displayed, analyzed or cross-correlated. Modeling geologic structure, using for example MineScape? Stratmodel, allows faults to be represented in true three-dimensional environment. This means that, in areas where the fault produces repeated section, the geometry is accurately depicted in the produced graphics. The user can see the intersection of the fault plane and the coal seams. When reserves are computed, a polygon drawn in plan view in this area will produce approximately double the reserves if evaluated through the vertical range of the repeat. This has an economic impact on the reserves, but more importantly, it allows the planner to know where in three dimensions the intersections are likely to occur. This can impact both surface and underground planning where proximity to the fault plane is a fundamental piece of information required in the planning process. Another important and unique aspect of computer software for geologic modeling and hazard analyses can be that access to the model is through a set of servers, which allows multiple users simultaneous access to the same model for graphics presentation, reserves calculation and other interrogations. Having one copy of the model on a server reduces design errors and confusion with users and management when multiple interpretations are in circulation. Other considerations for selecting the right software system to produce the quality of model needed for design include manageability. Even competent users will not provide the best models if the model construction process itself is too labor intensive. The interface between the geologists' interpretation and the modeling system needs to be concise, easily understood and easily modified. Modeling itself needs to be as 陳四樓礦 240萬噸新井通風安全設計streamlined as possible to allow for iteration, as in the case of batch processing that is utilized in software models. MineScape? has a “batch” process that can be stored. The batch process is established during the first execution of a multiple step process. For example, the steps might include building the MineScape? Stratmodel table model, followed by creation of the gridded model, followed by production of multiple cross sections and multiple plan maps such as structure contours, thickness isopach, outcrop maps, subcrop maps and other graphic displays. The facility to “record” a batch file and then to replay it and even to specify what date and time the batch will be rerun are integral MineScape? capabilities. When the first pass is completed, the whole set of steps is given a name and the process can be replayed by name. Therefore, one command allows the geologist to literally rerun all the modeling and graphics production steps without any intervention. The approach of batch processing allows the geologist to focus on the results of modeling analysis and not be labored with re-establishing the mechanics for each iteration. Having the capacity to easily run model iterations is particularly important. The functionality with regard to geologic assessment and volumetric analysis is derived from the continuity of lithologic codes. Geologic intercept information on which lithologic codes are based stem from drill holes, outcrop samples, survey data or scan lines across mining faces, and information gained from non-evasive measurements such as Radio Imaging Method developed by Stolarczyk et al. (2004). The model-building process is a combination of hard data such as drill hole data and geologic interpretation. This is often a learning process since the attitude of the fault (strike and dip of the fault surface), the displacement (throw) and changes in coal and fault geometry are all dependent of the geologist's interpretation of the data and are results of the modeling process. Because data collection is a dynamic process through the mining cycle, models need to have the ability to be changed and adapted with new data and interpretations. Iteration is useful tool for testing multiple hypotheses. For example, correlations across a fault may change with new data, particularly in areas where multiple faults in a small area add to complexity. If the complete process from modification of fault data through modeling to completed displays such as structure contours, subcrop maps and cross sections can be achieved with a single command, 陳四樓礦 240萬噸新井通風安全設計the geologist has the luxury of concentrating on a better interpretation that will aid the mine plan instead of the labor of creating an entirely new model. The easier the modeling, the more likely the geologist can spend the required time to achieve the most accurate model possible. Model display tools such as plan mapping and cross-section generation need to produce an accurate representation of the model, which shows where the coal is truncated at the fault intersection as precisely as possible, to aid in visualization and planning. Cross sections that traverse faults for underground mines and bench maps constructed for surface mine planning need to show the fault geometry as accurately as possible on either side of the extraction horizon for accurate short term-planning. 3. Case study on surface coal mine in Columbia?????????????????????????????????????????????????????????????????????????,??????? ,??????????????????????????????????????????????Fig. 1??Fig. 2??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Fig. 1?????Fig. 2,????????????????????????????????????????????????????Fig. 3??????????????????????????????????????????????????????????????????????????????????,??????????????????????????????????????????????????????????????????????????????????????????????????????????,???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????陳四樓礦 240萬噸新井通風安全設計???????????????????????????????????????????????????????????????????????????????????????????????Fig. 2,?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Fig. 2????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Display Full Size version of this image?????????????????????????????????????????????????????????????????????????????,??????? ,???????????????????????????????????陳四樓礦 240萬噸新井通風安全設計Display Full Size version of this image??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Display Full Size version of this image????????????????????????????????????????????????????????????????????????????????????????Fig. 1?????Fig. 2?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????,?????????????????????????????????????????????????????????????????????????????????????????????????,????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????,????????????????????????????????????????????????????????????????????????????????????????,??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????,??陳四樓礦 240萬噸新井通風安全設計?????????????????????????????????????????????????????????????????????????????,???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????4. ConclusionsComputer mapping software provides a comprehensive working environment where stratigraphic deposits can be modeled to represent the local geology. Commonly, the geological model is the base for reserves calculation and other mine planning work. MineScape? Stratmodel was used for modeling a multiple coal seams and multiple reverse faults for a surface coal mine in Columbia. Faults were stored as graphical 3-D objects and were supported by graphical functions to assist in the interpretation and positioning of faults. Coal seams and faults were modeled using bore hole data and survey pickups or other non-bore hole based data, geologists interpretation of not-logged intervals, crops, pinch-outs and user interpretations of drill hole penetrations. The ability to visualize faults in 2-D and 3-D is important in both surface and underground mines. Proper interpretation based on a well-built model provides a much-needed margin of safety around areas where rock quality and changing mining conditions could pose a danger to miners. To avoid expensive and unsafe field modification of plans, high-quality displays from a good computer model will insure that the mine design and the real-world conditions are compatible. 陳四樓礦 240萬噸新井通風安全設計ReferencesCoolen, 2003????????????,?????????????????????????????????????,????????????? ,???????????????????????????????????????,? ???????????????????????????????????????????????,??????????????Fiscor, 2002??????????,?????????????????????????? ,? ?????????????????,?????? ,???????????????????????????? ,??????????????,?????????? ,????????????Greb, 1991??????????,?????????????????????????????????????????????????????????????????????????????????,??????? ,??????????????????????????????????????????????, ???, ??????????, ?????????????????????????????????????????????, ????????????????????????????????,??????????????LeBlanc-Smith et al., 1997?????????????????,??????????? ,??????????? ,??????????????????????,???????????????????????????????????????????????????????????????????????????????????????????????,? ??????????????????????, ?????????????????,????????????Molinda and Ingram, 1989?????????????????????????????,???????????????????????????????????????????????????????????????????????????????????????????????,????????????????????????????????,???????????????? ,???????????????????????????? ,???????????,????????????Nelson, 1991????????????,???????????????????????????????????????????????????,? ?????????????????,?????????????????????????????????,?????????? ,?????????? ,???????????Sprouls, 1988?????????????, ???????????????????,? ????????????????,?????? ,???????????????????????????????? ,???????????????,????????????陳四樓礦 240萬噸新井通風安全設計中文譯文計算機映射采礦中的斷層弗拉德斯拉夫.科克基維克 a,迪恩.威廉斯 b,威廉姆.維爾克森 b,安德魯.斯施勒 aa 美國賓夕凡尼亞州州立大學地球礦物科學學院,154 Hosler 大樓, 大學 Park, PA 16802, 美國b 米尼科姆,Inc.,9635 Maroon Circle, Englewood, CO 80112, 美國2004 年 5 月 3 日收稿,2005 年 2 月 2 日和 2005 年 3 月 7 日兩次校訂,2005年 4 月 12 日網(wǎng)上可查摘要:采礦中有效的斷層映射由于經(jīng)濟和安全原因而顯得非常重要。未被發(fā)現(xiàn)的或錯誤標注的地質(zhì)危險能阻礙甚至使項目的發(fā)展停滯,使其利潤和安全受到影響。 計算機映射能夠滿足當今的快速回采率,要求采礦業(yè)在較短的時間內(nèi)排除地質(zhì)危險。一份案例研究表明計算機建模的作用在哥倫比亞的一個存在著多樣煤層和多樣逆斷層的露天煤礦上實現(xiàn).米尼科姆的 MineScape?模型被用在計算機映射上.關鍵詞:計算機映射 建模 地質(zhì)危害 采礦 安全文章大綱:1.緒論2.利用完整的地質(zhì)煤礦編制軟件建立斷層模型3.哥倫比亞露天礦山的案例研究4.結論參考文獻陳四樓礦 240萬噸新井通風安全設計1.緒論由于有了更重要的加強設備,煤礦回采面積增大了,定位和映射地質(zhì)危險的重要性也更加突出了,美國長壁開采的煤礦能最有力的說明了這一點,來自 Sprouls (1988), Fiscor (2002)和美國能源信息中心( EIA, 2004)的數(shù)據(jù)表明 2002 年美國長壁開采平均回采面積是 2749m×280m 或 77 ha 而在 1988 年平均回采面積是945 m×192 m 或 18 ha,安裝采煤機的平均功率在 1988 年只有 346KW,而在 2002年達到了 922KW,大多數(shù)國際采煤地區(qū)生產(chǎn)率都有了類似的增長。檢測、映射和減少地質(zhì)危險對產(chǎn)量和安全的負面影響對采礦有一定的經(jīng)濟效益,并在礦山設計中非常重要。長期的設計計劃,短期的產(chǎn)量計劃,每天產(chǎn)量的實現(xiàn)要靠映射和評估來準確的描繪煤炭礦床的幾何形狀,這對由于大斷層的位移被壓緊的礦床的描繪尤其準確。映射地質(zhì)危險對按時計薪和礦山管理者很重要,良好的安全性能是在危險減到最小的情況下礦工對個人負責來實現(xiàn)的, 映射地質(zhì)危險是由地質(zhì)學家、采礦工程師和礦工合作想出來減少危險的。礦工和檢查員可以利用危險映射作為一個重要的、可以用來傳達未知的和已知的危險的工具,利用它在安全的步驟下救助。每天,每周甚至更長時間的決策都要以最初的礦山計劃和更具會才工作的數(shù)據(jù)修訂的地質(zhì)危險映射作為基礎。當可能存在的危險被準確映射時,我們要增加有效地頂板支護。Greb 在 1991 年《肯塔基西部煤礦頂板垮落與危害預測》的分析報告中強調(diào)頂板事故預報是一個動態(tài)過程,要結合不斷更新的地質(zhì)和設計知識來為最好的煤礦頂板支護提供信息。反復的地質(zhì)和礦山設計要求用上所有能用上的工具來完成分析報告。這篇論文將以利用 MineScape? (2004)地質(zhì)建模軟件映射斷層為例作介紹。2.利用完整的地質(zhì)或煤礦計劃編制軟件映射斷層斷層及其他的地質(zhì)構造影響煤層形成的方式,不完善的礦床描述將導致不完善的設計,從而導致在非最佳領域中做出必要調(diào)整,采礦設計要考慮逆斷層的垂直疊加,以確保資源評估對煤層疊加的評估數(shù)據(jù)精確,因為斷層周圍的巖石常被破壞,地質(zhì)危害映射精確的描述斷層有助于設計安全的采礦計劃。在采礦過程中人們發(fā)現(xiàn)斷層的形狀與模型預測的形狀又很大出入,這既是生產(chǎn)噩夢,又是安全中存在的隱患。通常情況下,對礦床的生動再現(xiàn)是通過計算機輔助設計工具(CAD)完成的,陳四樓礦 240萬噸新井通風安全設計三維設計縮短了過程時間,使制圖法快速產(chǎn)生,采礦工程師在次進步中收益頗多,采礦軟件的發(fā)展幫助他們將巖層參數(shù)的復雜性和空間分布視圖化。從而助其在新領域未進行操作之前就可以修改工程設計,檢驗與比較新內(nèi)容。關于地質(zhì)模型和采礦計劃的總體設想是由 LeBlanc-Smith et al 在 1997 年提出來的,而測量,了解和將煤礦特性視圖化的重要性是由 Whateley 2002 年提出來的。探測礦井的過程綜合利用了地理學、地球物理學、土工技術與地形學。未處理的數(shù)據(jù)經(jīng)過電腦字典與一系列人們所接受的數(shù)值所驗證,并儲存在相關的地理學數(shù)據(jù)庫中。此字典是存儲了有效參數(shù)的典籍,若遇到數(shù)值,則有一系列有效數(shù)據(jù),若遇到特性區(qū)域,則有一連串能為人接受的特性參數(shù)。相關的數(shù)據(jù)庫是用來集合與組織大量描述礦床的參數(shù)與信息。ODBC 的原理為這些數(shù)據(jù)的演示、分析與交叉聯(lián)系提供了環(huán)境。地質(zhì)結構模型以 MineScape? Stratmodel 為例,使在真實的三維環(huán)境中再現(xiàn)斷層成為可能,這意味著在斷層引起疊加的區(qū)域,其形狀可以在制圖中精確描述,用戶可以看到斷層的上下盤與煤層的交叉點。如果斷層通過垂直疊加,那么當計算儲量的時候,次區(qū)域可以有兩倍的儲量,這對儲量有經(jīng)濟影響,但是更重要的是他允許設計者在三維圖中意識到哪里可能出現(xiàn)交叉點,露天及地下設計在接近斷層帶的地方都有可能出現(xiàn),這是設計過程中一條重要信息。電腦軟件的另一個重要而特別的地方是通過一組服務器進行地質(zhì)模型和安全隱患分析的,使眾多用戶能夠使用 相同的模型進行制圖再現(xiàn)、儲量計算、以及解決其他的問題,當多種解釋存在時每個服務器有一個拷貝的模型,可以減少計算失誤和解決管理者和用戶的疑慮。選擇正確的軟件系統(tǒng)的其他考慮是生產(chǎn)出包括可管理性在內(nèi)的設計質(zhì)量要求。如果模型在建造過程中需要大量人力,那么即便是有能力的用戶也不能提供最佳模型,地質(zhì)學家的解釋與模型模型系統(tǒng)的分界面必須精確,簡單易懂,易于修改。模型本省應盡可能的合理化以允許重復操作。正如軟件模型中使用的批處理一樣,批處理是在多部程序中首先建立的。例如這些步驟有可呢個包括 MineScape? Stratmodel 模型,并接著產(chǎn)生線圖模型、多層交叉步為、復合計劃圖,例如結構輪廓、等厚線、露頭線和其他的圖表展示。記錄批文件,展示批文件甚至確定重新啟動批的時間都是在 MineScape? Stratmode 的能力范圍之