《福建省福州市2019年中考數(shù)學(xué)復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 二次函數(shù)的基本性質(zhì)同步訓(xùn)練.doc》由會員分享,可在線閱讀,更多相關(guān)《福建省福州市2019年中考數(shù)學(xué)復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 二次函數(shù)的基本性質(zhì)同步訓(xùn)練.doc(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第四節(jié) 二次函數(shù)的基本性質(zhì) 姓名:________ 班級:________ 限時:______分鐘 1.(xx廈門質(zhì)檢)拋物線y=ax2+2x+c的對稱軸是直線( ) A.x=- B.x=- C.x= D.x= 2.(xx泰安)二次函數(shù)y=ax2+bx+c的圖象如圖所示,則反比例函數(shù)y=與一次函數(shù)y=ax+b在同一坐標(biāo)系內(nèi)的大致圖象是( ) 3.(xx山西)用配方法將二次函數(shù)y=x2-8x-9化為y=a(x-h(huán))2+k的形式為( ) A.y=(x-4)2+7 B.y=(x-4)2-25 C.y=(x+4)2+7 D.y=(x+4)2-25 4.(xx陜西)對于拋物線y=ax2+(2a-1)x+a-3,當(dāng)x=1時,y>0,則這條拋物線的頂點(diǎn)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.(xx黃岡)當(dāng)a≤x≤a+1時,函數(shù)y=x2-2x+1的最小值為1,則a的值為( ) A.-1 B.2 C.0或2 D.-1或2 6.(xx紹興)若拋物線y=x2+ax+b與x軸兩個交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線x=1,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點(diǎn)( ) A. (-3,-6) B. (-3,0) C. (-3,-5) D. (-3,-1) 7.(xx河北)對于題目“一段拋物線L:y=-x(x-3)+c(0≤x≤3)與直線l:y=x+2有唯一公共點(diǎn),若c為整數(shù),確定所有c的值,”甲的結(jié)果是c=1,乙的結(jié)果是c=3或4,則( ) A.甲的結(jié)果正確 B.乙的結(jié)果正確 C.甲、乙的結(jié)果合在一起才正確 D.甲、乙的結(jié)果合在一起也不正確 8. (xx安順)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個結(jié)論:①abc<0;②b2-4ac>0;③3a+c>0;④(a+c)2<b2,其中正確的結(jié)論有( ) A.1個 B.2個 C.3個 D.4個 9.(xx濰坊)已知二次函數(shù)y=-(x-h(huán))2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時,與其對應(yīng)的函數(shù)值y的最大值為-1,則h的值為( ) A.3或6 B.1或6 C.1或3 D.4或6 10.(xx天津)已知拋物線y=ax2+bx+c(a,b,c為常數(shù),a≠0)經(jīng)過點(diǎn)(-1,0),(0,3),其對稱軸在y軸右側(cè),有下列結(jié)論: ①拋物線經(jīng)過點(diǎn)(1,0); ②方程ax2+bx+c=2有兩個不相等的實數(shù)根; ③-3<a+b<3. 其中,正確結(jié)論的個數(shù)為:( ) A.0 B.1 C.2 D.3 11 .(xx衡陽)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( ) A. 1個 B. 2個 C. 3個 D. 4個 12.(xx三明質(zhì)檢)二次函數(shù)y=x2+mx+m-2的圖象與x軸有________個交點(diǎn). 13.(xx南平質(zhì)檢)將拋物線y=3(x+1)2-2向右平移3個單位,再向上平移4個單位,那么得到的拋物線對應(yīng)的函數(shù)表達(dá)式為________. 14.(xx孝感)如圖,拋物線y=ax2與直線y=bx+c的兩個交點(diǎn)坐標(biāo)分別為A(-2,4),B(1,1),則方程ax2=bx+c的解是________. 15.(xx南充節(jié)選)如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論: ①2a+c<0; ②若(-,y1),(-,y2),(,y3)在拋物線上,則y1>y2>y3; ③關(guān)于x的方程ax2+bx+k=0有實數(shù)解,則k>c-n. 其中正確結(jié)論是________. 16.(xx云南省卷)已知二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A(0,3),B(-4,-)兩點(diǎn), (1)求b、c的值; (2)二次函數(shù)y=-x2+bx+c的圖象與x軸是否有公共點(diǎn)?若有,求公共點(diǎn)的坐標(biāo);若沒有,請說明理由. 1.已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過點(diǎn)B(2,-5). (1)求該函數(shù)的關(guān)系式; (2)求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo); (3)將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點(diǎn)時,A、B兩點(diǎn)隨圖象移至A′、B′,求△O A′B′的面積. 2.(xx杭州)設(shè)二次函數(shù)y=ax2+bx-(a+b)(a,b是常數(shù),a≠0). (1)判斷該二次函數(shù)圖象與x軸的交點(diǎn)的個數(shù),說明理由; (2)若該二次函數(shù)圖象經(jīng)過A(-1,4),B(0,-1),C(1,1)三個點(diǎn)中的其中兩個點(diǎn),求該二次函數(shù)的表達(dá)式; (3)若a+b<0,點(diǎn)P(2,m)(m>0)在該二次函數(shù)圖象上,求證:a>0. 3.(xx漳州質(zhì)檢)已知拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)的對稱軸為直線x=-2. (1)b=________;(用含a的代數(shù)式表示) (2)當(dāng)a=-1時,若關(guān)于x的方程ax2+bx+c=0在-3<x<1的范圍內(nèi)有解,求c的取值范圍; (3)若拋物線過點(diǎn)(-2,-2),當(dāng)-1≤x≤0時,拋物線上的點(diǎn)到x軸距離的最大值為4,求a的值. 4.(xx杭州)在平面直角坐標(biāo)系中,設(shè)二次函數(shù)y1=(x+a)(x-a-1),其中a≠0. (1)若函數(shù)y1的圖象經(jīng)過點(diǎn)(1,-2),求函數(shù)y1的表達(dá)式; (2)若一次函數(shù)y2=ax+b的圖象與y1的圖象經(jīng)過x軸上同一點(diǎn),探究實數(shù)a,b滿足的關(guān)系式; (3)已知點(diǎn)P(x0,m)和Q(1,n)在函數(shù)y1的圖象上,若m<n,求x0的取值范圍. 5.(xx南通)在平面直角坐標(biāo)系xOy中,已知拋物線y=x2-2(k-1)x+k2-k(k為常數(shù)). (1)若拋物線經(jīng)過點(diǎn)(1,k2),求k的值; (2)若拋物線經(jīng)過點(diǎn)(2k,y1)和點(diǎn)(2,y2),且y1>y2,求k的取值范圍; (3)若將拋物線向右平移1個單位長度得到新拋物線,當(dāng)1≤x≤2時,新拋物線對應(yīng)的函數(shù)有最小值-,求k的值. 參考答案 【基礎(chǔ)訓(xùn)練】 1.A 2.C 3.B 4.C 5.D 6.B 7.D 8.B 9.B 10.C 11.D 12.2 13.y=3(x-2)2+2 14.x1=-2,x2=1 15.② 【解析】 ∵-<,a>0,∴a>-b,∵x=-1時,y>0,∴a-b+c>0,∴2a+c>a-b+c>0,故①錯誤;若(-,y1),(-,y2),(,y3)在拋物線上,由圖象法可知,y1>y2>y3,故②正確;∵拋物線與直線y=t有交點(diǎn)時,方程ax2+bx+c=t有解,t≥n,∴ax2+bx+c-t=0有實數(shù)解,要使得ax2+bx+k=0有實數(shù)解,則k=c-t≤c-n,故③錯誤,故答案為②. 16.解: (1)將點(diǎn)A(0,3),B(-4,- )代入二次函數(shù)解析式,得 解得. (2)由(1)知,二次函數(shù)解析式為y=-x2+x+3,令y=0,得-x2+x+3=0, 整理得x2-6x-16=0, 解得x1=-2,x2=8, 即該二次函數(shù)的圖象與x軸有兩個不同交點(diǎn),坐標(biāo)分別為(-2,0),(8,0). 【拔高訓(xùn)練】 1.解:(1)設(shè)函數(shù)關(guān)系式為頂點(diǎn)式y(tǒng)=a(x+1)2+4. 將B(2,-5)代入得:a=-1. ∴該函數(shù)的解析式為:y=-(x+1)2+4=-x2-2x+3. (2)令x=0,得y=3,因此拋物線與y軸的交點(diǎn)為:(0,3). 令y=0,則-x2-2x+3=0,解得:x1=-3,x2=1,即拋物線與x軸的交點(diǎn)為:(-3,0),(1,0). (3)設(shè)拋物線與x軸的交點(diǎn)為M、N(M在N的左側(cè)),由(2)知:M(-3,0),N(1,0). 當(dāng)函數(shù)圖象向右平移經(jīng)過原點(diǎn)時,M與O重合,因此拋物線向右平移了3個單位. 故A′(2,4),B′(5,-5),如解圖. ∴S△OA′B′=(2+5)9-24-55=15. 2.(1)解:由題意Δ=b2-4a[-(a+b)]=b2+4ab+4a2=(2a+b)2≥0, ∴二次函數(shù)圖象與x軸的交點(diǎn)的個數(shù)有兩個或一個. (2)解:∵當(dāng)x=1時,y=a+b-(a+b)=0, ∴拋物線不經(jīng)過點(diǎn)C. 把點(diǎn)A(-1,4),B(0,-1)分別代入,得 解得 ∴拋物線對應(yīng)的函數(shù)解析式為y=3x2-2x-1. (3)證明:當(dāng)x=2時, m=4a+2b-(a+b)=3a+b>0①, ∵a+b<0,∴-a-b>0②, ①②相加得:2a>0,∴a>0. 3.解:(1)4a; (2)當(dāng)a=-1時,∵關(guān)于x的方程-x2-4x+c=0在-3<x<1的范圍內(nèi)有解,即關(guān)于x的方程x2+4x-c=0在-3<x<1的范圍內(nèi)有解, ∴根的判別式=16+4c≥0,即c≥-4, 拋物線y=x2+4x=(x+2)2-4與直線y=c在-3<x<1的范圍內(nèi)有交點(diǎn). 當(dāng)x=-2時,y=-4;當(dāng)x=1時,y=5. 由圖象可知:-4≤c<5. (3)∵拋物線y=ax2+4ax+c過點(diǎn)(-2,-2), ∴c=4a-2, ∴拋物線對應(yīng)的函數(shù)解析式為:y=ax2+4ax+4a-2=a(x+2)2-2. 方法一:①當(dāng)a>0時,拋物線開口向上. ∵拋物線的對稱軸為直線x=-2, ∴當(dāng)-1≤x≤0時,y隨x增大而增大. ∵拋物線上的點(diǎn)到x軸距離的最大值為4, 由圖象可知:4a-2=4.∴a=. ②當(dāng)a<0時,拋物線開口向下. ∵拋物線對稱軸為直線x=-2, ∴當(dāng)-1≤x≤0時,y隨x增大而減?。? ∵拋物線上的點(diǎn)到x軸距離的最大值為4, 由圖象可知:4a-2=-4.∴a=-. 綜上所述:a=或a=-. 4.解: (1)函數(shù)y1的圖象經(jīng)過點(diǎn)(1,-2), 將其代入得(a+1)(-a)=-2, 解得a1=-2,a2=1, 當(dāng)a=-2時,y1=(x-2)(x+2-1), 化為一般式得y=x2-x-2, 當(dāng)a=1時,y1=(x+1)(x-2), 化為一般式得y1=x2-x-2, 綜上所述,函數(shù)y1的表達(dá)式為y1=x2-x-2; (2)函數(shù)y1=(x+a)(x-a-1)的圖象與x軸的交點(diǎn)為(-a,0),(a+1,0), ①當(dāng)函數(shù)y2=ax+b的圖象經(jīng)過點(diǎn)(-a,0)時, 把x=-a,y=0代入y2=ax+b中, 得a2=b; ②當(dāng)函數(shù)y2=ax+b的圖象經(jīng)過點(diǎn)(a+1,0)時, 把x=a+1,y=0代入y2=ax+b中, 得a2+a=-b; (3)拋物線y1=(x+a)(x-a-1)的對稱軸是直線x==, ∵二次項系數(shù)1>0, ∴拋物線的開口向上, ∴拋物線上的點(diǎn)離對稱軸的距離越大,它的縱坐標(biāo)值也越大, ∵m<n, ∴點(diǎn)Q離對稱軸x=的距離比點(diǎn)P離對稱軸x=的距離大, ∴|x0-|<1-, ∴0<x0<1. 5.解: (1)∵拋物線y=x2-2(k-1)x+k2-k(k為常數(shù))經(jīng)過點(diǎn)(1,k2), ∴1-2(k-1)+k2-k=k2.解得k=. (2)∵拋物線經(jīng)過點(diǎn)(2k,y1)和點(diǎn)(2,y2), ∴y1=(2k)2-4k(k-1)+k2-k=k2+k,y2=4-4(k-1)+k2-k=k2-k+8; 又∵y1>y2,∴k2+k>k2-k+8,解得k>1. (3)∵拋物線y=x2-2(k-1)x+k2-k=(x-k+1)2-k-1, ∴平移后的解析式為y=(x-k)2-k-1. ∴該拋物線的對稱軸為直線x=k. ①若k<1,則當(dāng)x=1時,y有最小值-. ∴(1-k)2-k-1=-, 解得k1=1,k2=. ∵k<1,∴k1=1. ②若1≤k≤2,則當(dāng)x=k時,y有最小值-. ∴-k-1=-,解得k=1. ③若k>2,則當(dāng)x=2時,y有最小值-. ∴(2-k)2-k-1=-, 解得k1=3,k2=. ∵k>2,∴k=3. 綜上,k的值為1或3.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 福建省福州市2019年中考數(shù)學(xué)復(fù)習(xí) 第三章 函數(shù) 第四節(jié) 二次函數(shù)的基本性質(zhì)同步訓(xùn)練 福建省 福州市 2019 年中 數(shù)學(xué) 復(fù)習(xí) 第三 第四 二次 基本 性質(zhì) 同步 訓(xùn)練
鏈接地址:http://italysoccerbets.com/p-5453005.html