壓縮包內(nèi)含有CAD圖紙和說(shuō)明書(shū),均可直接下載獲得文件,所見(jiàn)所得,電腦查看更方便。Q 197216396 或 11970985
畢業(yè)設(shè)計(jì)答辯記錄卡
機(jī)電 系 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 專業(yè) 姓名
答 辯 內(nèi) 容
問(wèn) 題 摘 要
評(píng) 議 情 況
記錄員: (簽名)
成 績(jī) 評(píng) 定
指導(dǎo)教師評(píng)定成績(jī)
答辯組評(píng)定成績(jī)
綜合成績(jī)
注:評(píng)定成績(jī)?yōu)?00分制,指導(dǎo)教師為30%,答辯組為70%。
專業(yè)答辯組組長(zhǎng): ?。ê灻?
20 年 月 日
設(shè)計(jì)任務(wù)書(shū)
畢業(yè)生
姓名
專業(yè)
指導(dǎo)教師
姓名
類(lèi)別
學(xué)號(hào)
班級(jí)
職稱
外聘√ 本校
一、 畢業(yè)設(shè)計(jì)題目
電站水輪機(jī)進(jìn)水閥門(mén)液壓系統(tǒng)控制設(shè)計(jì)
二、畢業(yè)設(shè)計(jì)提供的原始數(shù)據(jù)資料
1.啟動(dòng)力為308KN
2.閥門(mén)開(kāi)關(guān)時(shí)間:60~90s(可調(diào))
3.液壓缸的平均輸出速度為0.9m/min
4設(shè)計(jì)采用伸縮式液壓缸,一級(jí)行程358mm,二級(jí)形成267mm。
三、畢業(yè)設(shè)計(jì)應(yīng)完成主要內(nèi)容:
1、畢業(yè)設(shè)計(jì)說(shuō)明書(shū):
第2頁(yè) 共 2頁(yè)
(1)二級(jí)伸縮缸的設(shè)計(jì)
(2)液壓控制系統(tǒng)的設(shè)計(jì)
2、畢業(yè)設(shè)計(jì)圖紙:
(1)二級(jí)伸縮缸
(2)液壓站裝配圖
(3)液壓原理圖、油路塊及其底板
(4)油箱及其他部件
(5)設(shè)計(jì)說(shuō)明書(shū)(不少于40頁(yè))
四、畢業(yè)生應(yīng)提交的畢業(yè)設(shè)計(jì)資料要求
1、畢業(yè)設(shè)計(jì)說(shuō)明書(shū):一份
2、畢業(yè)設(shè)計(jì)圖紙:
(1)二級(jí)伸縮缸 1張(A0)
(2)油路塊 1張(A0)
(3)液壓站裝配圖 1張(A0)
(4)液壓原理圖 1張(A1)
(5)油箱 1張(A2)
(6)其他零部件 3張(A3)
(7)設(shè)計(jì)說(shuō)明書(shū)(不少于40頁(yè))
五、設(shè)計(jì)進(jìn)度安排(從第五周起)
序號(hào)
時(shí)間
周次
設(shè)計(jì)任務(wù)完成的內(nèi)容及質(zhì)量要求
1
3月31日~4月6日
第6周
收集 查詢 整理 有關(guān)的資料
2
第7周
總體方案研討,確定及草圖繪制
3
第8周
確定及草圖繪制
4
第9周
結(jié)構(gòu)理論計(jì)算
5
第10周
繪制液壓原理圖正式圖
6
第11周
繪制二級(jí)液壓缸裝配圖
7
第12周
繪制油路塊及其底板
8
第13周
繪制油箱裝配圖及蓋板
9
第14周
繪制壓力表安裝板
10
第15周
打說(shuō)明書(shū)
11
6月9日~6月15日
第16周
打印和裝訂
12
6月16日~6月22日
第17周
教師評(píng)閱和開(kāi)始答辯
六、主要參考文獻(xiàn)資料
1、工具書(shū):
機(jī)械設(shè)計(jì)手冊(cè)
新編液壓工程手冊(cè)
2、參考資料:
《液壓氣動(dòng)傳動(dòng)與控制》 《公差配合與測(cè)量技術(shù)》 《機(jī)械設(shè)計(jì)手冊(cè)》
七、簽字欄
簽 字 欄
畢業(yè)生
姓名
梁文輝
專業(yè)
機(jī)制
班級(jí)
10機(jī)制本
要求設(shè)計(jì)工作起止日期
201 年3月31日~~~201 年6月1日
教師審核
指導(dǎo)教師(簽字)
日期
201 年 月 日
教研室主任審查(簽字)
日期
201 年 月 日
系主任批準(zhǔn)(簽字)
日期
201 年 月 日
外文資料
Hydraulic System
Hydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 ? Braman Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved.
After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G ? Constantimscofluct- uations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development.
The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for nearly 20 years later. Before and after in 1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader.
Hydraulic transmission There are many outstanding advantages, it is widely used, such as general industrial use of plastics processing machinery, the pressure of machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel indu-stry metallurgical machinery, lifting equipment, such as roller adjustment device; civil water projects with flood control and dam gate devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship from the deck heavy machinery (winch), the bow doors, bulkhead valve, stern thruster, etc.; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military industrial control devices used in artillery, ship antirolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.
A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, auxiliary components and hydraulic oil.
The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump.
Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement.
Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic pressure control valve can be divided into valves, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve.
Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars.
Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories.
The concept of gear pump is very simple, that it is two of the most basic form of the same size gear in a close cooperation of mutual engagement with the rotating shell, the shell's internal similar "8" shape, the two gears mounted inside , the diameter of gear and work closely with both sides and shell. From the extruder the material inhaled into the mouth of two intermediate gears, and full of the space, with the teeth along the shell of the rotary movement, the final two hours from the meshing teeth.
Speaking in terms of gear, also known as positive displacement pump device, that is, inside the cylinder like a piston, when a tooth to another tooth space of the fluid, the liquid was squeezed mechanically to row out. Because the liquid is incompressible, so the liquid and the tooth at the same time will not be able to occupy the same space, so that the liquid has been ruled out. Because of the constant mesh gear, this phenomenon occurs on a row and, therefore, the pump provides a continuous export to exclude the amount of a turn each pump, the volume of discharge is the same. With the continuous rotation of the driveshaft, pump fluid is continuously discharged. Pump flow directly to the speed of the pump. In fact, there is little pump of the fluid loss, which makes the operation of pumps can not achieve 100% efficiency, as these fluids are used to on both sides of bearing and gear lubrication, and the pump body is also not possible with no gap, it can not be so that 100% of fluid discharged from the export, so a small amount of fluid loss is inevitable. However, a good pump can be run out of material for the majority, will still be able to achieve 93% ~ 98% efficiency.
For the viscosity or density change in the process fluid, the pump will not be affected too much. If there is a damper, for example, in the export side, one row or a limiter filter, pumps will push fluid through them. If the damper changes in their work, that is, if the filters become dirty, blocked, or limiter on the back of the hypertension, the pump will maintain a constant flow, until the device in the weakest parts of the mechanical limit (usually equipped with a torque limiter). For a pump speed, in fact, there are restrictions, which mainly depends on the process fluid, if the transmission is oil, pump can rotate at high speed, but when the fluid is a high viscosity of the polymer melt, such restrictions will be significantly reduced. Promote blood flow into the intake side of the two tooth space is very important, if not fill in this space is full, the pump will not be able to discharge the flow of accurate, so the value of PV (pressure × velocity) is also a limiting factor, and is a process variable. As a result of these restrictions, gear pump manufacturers will provide a range of products, that is, different specifications and emission (perweek to the emission of volume). These pumps will fit the specific application of technology to enable the system to achieve optimal capacity and price.
PEP-II pump shaft gear and a total of one species hardened using technology, will be a longer working life. "D"-type bearing a combination of forced lubrication mechanism, so that the polymer surface by the bearing, and return to the import side of pump to ensure effective lubrication of the rotation axis. This feature reduces the degradation of polymers and the possibility of being stranded. Precision machining of the pump body can "D"-type gear shaft with precision bearings to ensure noneccentric gear shaft to prevent gear wear. Structure and Parkool PTFE sealing lip sealed water cooled sealed together. This shaft seal does not actually contact the surface, it is the principle of the sealing polymer to a semimolten state cooling and the formation of self sealing. Can also be used Rheoseal sealing, seal it inside the table are reverse spiral groove processing, the polymer can be imported back to the antipressure. In order to facilitate the installation, the manufacturer has designed the installation of a ring bolt, so that the flange and install other equipment line, which makes the manufacture of tube flange easier. PEP-II with a gear pump with the pump to match the specifications of the heating elements for the user matching, which ensures rapid heating and heat control. Heating the body and pump in different ways, the damage to these components is limited to a board, the pump has nothing to do with the whole.
Gear pump by an independent motor drive, to be effective in blocking the upper reaches of the pressure pulsation and flow fluctuations. Gear pump in the outlet of the pressure fluctuation can be controlled within 1%. In the extrusion production line using a gear pump, can increase the output flow rate of material in the extruder to reduce the shear and residence time to reduce the extrusion temperature and pressure fluctuation in order to enhance productivity and product quality.
The role of the hydraulic system is to help humanity work. Mainly by the implementation of components to rotate or pressure into a reciprocating motion.
Hydraulic principle :it consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called "hydraulic press"; the said oilfilled "hydraulic machine." Each of the two liquid a sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's law, small piston to the pressure of the pressure through the liquid passed to the large piston, piston top will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P = F1/SI, Can be the same size in all directions to the transmission of liquid. "By the large piston is also equivalent to the inevitable pressure P. If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2 = PxS2 Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of a smaller force, the piston will be in great force, for which the hydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel.
? Hydraulic system and hydraulic power control signal is composed of two parts, the signal control of some parts of the hydraulic power used to drive the control valve movement.
Part of the hydraulic power means that the circuit diagram used to show the different functions of the interrelationship between components. Containing the source of hydraulic pump, hydraulic motor and auxiliary components; hydraulic control part contains a variety of control valves, used to control the flow of oil, pressure and direction; operative or hydraulic cylinder with hydraulic motors, according to the actual requirements of their choice.
In the analysis and design of the actual task, the general block diagram shows the actual operation of equipment. Hollow arrow indicates the signal flow, while the solid arrows that energy flow.
Basic hydraulic circuit of the action sequence Control components (two four-way valve) and the spring to reset for the implementation of components (double-acting hydraulic cylinder), as well as the extending and retracting the relief valve opened and closed. For the implementation of components and control components, presentations are based on the corresponding circuit diagram symbols, it also introduced ready made circuit diagram symbols.
Working principle of the system, you can turn on all circuits to code. If the first implementation of components numbered 0, the control components associated with the identifier is 1. Out with the implementation of components corresponding to the identifier for the even components, then retracting and implementation of components corresponding to the identifier for the odd components. Hydraulic circuit carried out not only to deal with numbers, but also to deal with the actual device ID, in order to detect system failures.
DIN ISO1219-2 standard definition of the number of component composition, which includes the following four parts: device ID, circuit ID, component ID and component ID. The entire system if only one device, device number may be omitted.
Practice, another way is to code all of the hydraulic system components for numbers at this time, components and component code should be consistent with the list of numbers. This method is particularly applicable to complex hydraulic control system, each control loop are the corresponding number with the system.
With mechanical transmission, electrical transmission compared to the hydraulic drive has the following advantages:
1, a variety of hydraulic components, can easily and flexibly to layout.
2, light weight, small size, small inertia, fast response.
3, to facilitate manipulation of control, enabling a wide range of stepless speed regulation (speed range of 2000:1).
4, to achieve overload protection automatically.
5, the general use of mineral oil as a working medium, the relative motion can be self-lubricating surface, long service life.
6, it is easy to achieve linear motion.
7, it is easy to achieve the automation of machines, when the joint control of the use of electro-hydraulic, not only can achieve a higher degree of process automation, and remote control can be achieved.
The shortcomings of the hydraulic system:
1, as a result of the resistance to fluid flow and leakage of the larger, so less efficient. If not handled properly, leakage is not only contaminated sites, but also may cause fire and explosion.
2, vulnerable performance as a result of the impact of temperature change, it would be inappropriate in the high or low temperature conditions.
3, the manufacture of precision hydraulic components require a higher, more expensive and hence the price.
4, due to the leakage of liquid medium and the compressibility and can not be strictly the transmission ratio.
5, hydraulic transmission is not easy to find out the reasons for failure; the use and maintenance requirements for a higher level of technology.
In the hydraulic system and its system, the sealing device to prevent leakage of the work of media within and outside the dust and the intrusion of foreign bodies. Seals played the role of components, namely seals. Medium will result in leakage of waste, pollution and environmental machinery and even give rise to malfunctioning machinery and equipment for personal accident. Leakage within the hydraulic system will cause a sharp drop in volumetric efficiency, amounting to less than the required pressure, can not even work. Microinvasive system of dust particles, can cause or exacerbate friction hydraulic component wear, and further lead to leakage.
Therefore, seals and sealing device is an important hydraulic equipment components. The reliability of its work and life, is a measure of the hydraulic system an important indicator of good or bad. In addition to the closed space, are the use of seals, so that two adjacent coupling surface of the gap between the need to control the liquid can be sealed following the smallest gap. In the contact seal, pressed into self-seal-style and self-styled self-tight seal (ie, sealed lips) two.
The three hydraulic system diseases
1, as a result of heat transmission medium (hydraulic oil) in the flow velocity in various parts of the existence of different, resulting in the existence of a liquid within the internal friction of liquids and pipelines at the same time there is friction between the inner wall, which are a result of hydraulic the reasons for the oil temperature. Temperature will lead to increased internal and external leakage, reducing its mechanical efficiency. At the same time as a result of high temperature, hydraulic oil expansion will occur, resulting in increased compression, so that action can not be very good control of transmission. Solution: heat is the inherent characte -ristics of the hydraulic system, not only to minimize eradication. Use a good quality hydraulic oil, hydraulic piping arrangement should be avoided as far as possible the emergence of bend, the use of high-quality pipe and fittings, hydraulic valves, etc.
2, the vibration of the vibration of the hydraulic system is also one of its malaise. As a result of hydraulic oil in the pipeline flow of high-speed impact and the control valve to open the closure of the impact of the process are the reasons for the vibration system. Strong vibration control action will cause the system to error, the system will also be some of the more sophisticated equipment error, resulting in system failures. Solutions: hydraulic pipe should be fixed to avoid sharp bends. To avoid frequent changes in flow direction, can not avoid damping measures should be doing a good job. The entire hydraulic system should have a good damping measures, while avoiding the external local oscillator on the system.
3, the leakage of the hydraulic system leak into inside and outside the leakage leakage. Leakage refers to the process with the leak occurred in the system, such as hydraulic piston-cylinder on both sides of the leakage, the control valve spool and valve body, such as between the leakage. Although no internal leakage of hydraulic fluid loss, but due to leakage, the control of the established movements may be affected until the cause system failures. Outside means the occurrence of leakage in the system and the leakage between the external environment. Direct leakage of hydraulic oil into the environment, in addition to the system will affect the working environment, not enough pressure will cause the system to trigger a fault. Leakage into the environment of the hydraulic oil was also the danger of fire. Solution: the use of better quality seals to improve the machining accuracy of equipment.
Hydraulic components will be high-performance, high-quality, high reliability, the system sets the direction of development; to the low power, low noise, vibration, without leakage, as well as pollution control, water based media applications to adapt to environmental requirements, such as the direction of development; the development of highly integrated high power density, intelligence, mechatronics and micro-light mini-hydraulic components; active use of new techniques, new materials and electronics, sensing and other high-tech.
Hydraulic coupling to high-speed high-power and integrated development of hydraulic transmission equipment, development of water hydraulic coupling medium speed and the field of automotive applications to develop hydraulic reducer, improve product reliability and working hours MTBF; hydraulic torque converter to the development of high-power products, parts and components to improve the manufacturing process technology to improve reliability, promote computeraided technology, the development of hydraulic torque converter and power shift transmission technology supporting the use of ; Clutch fluid viscosity should increase the quality of products, the formation of bulk to the high-power and high-speed direction.
Pneumatic Industry:Products to small size, light weight, low power consumption, integrated portfolio of development, the im