壓縮包內(nèi)含有CAD圖紙和說(shuō)明書(shū),均可直接下載獲得文件,所見(jiàn)所得,電腦查看更方便。Q 197216396 或 11970985
任務(wù)書(shū)
課題名稱(chēng)
2HP熱泵干燥機(jī)的設(shè)計(jì)
院 (系)
專(zhuān) 業(yè)
姓 名
學(xué) 號(hào)
起訖日期
指導(dǎo)教師
畢業(yè)設(shè)計(jì)(論文)的內(nèi)容和要求
課題:2HP熱泵干燥機(jī)的設(shè)計(jì)
本畢業(yè)設(shè)計(jì)課題結(jié)合產(chǎn)品開(kāi)發(fā),要求學(xué)生有一定的工程能力,本課題選題合理,工作量飽滿(mǎn),機(jī)械制圖要求比較高。
學(xué)生通過(guò)本課題的設(shè)計(jì)可以綜合大學(xué)4年所學(xué)知識(shí)的運(yùn)用能力,特別是工程熱力學(xué)、傳熱學(xué)、流體力學(xué)、制冷、熱泵技術(shù)及相關(guān)專(zhuān)業(yè)課程的知識(shí)應(yīng)用,同時(shí)有要有一定創(chuàng)新能力。本畢業(yè)設(shè)計(jì)資料比較欠缺,所設(shè)計(jì)要求學(xué)生進(jìn)行設(shè)計(jì)計(jì)算、總裝圖和零部件圖紙的設(shè)計(jì),通過(guò)本畢業(yè)課題的設(shè)計(jì)有利于學(xué)生工作盡快適應(yīng)工作崗位的要求設(shè)計(jì)。
主要設(shè)計(jì)參數(shù):
已知環(huán)境條件:
干球溫度:60℃ 相對(duì)濕度:70%
壓縮機(jī)功率:2HP
制冷劑:R22
主要內(nèi)容:
熱泵干燥機(jī)的設(shè)計(jì)主要是單級(jí)壓縮熱泵循環(huán)中蒸發(fā)器和冷凝器的設(shè)計(jì):
1、查閱資料,要求查閱相關(guān)資料,中文文獻(xiàn)25篇以上,英文文獻(xiàn)5篇以上,了解冷除濕機(jī)工作原理,寫(xiě)文獻(xiàn)綜述,并作開(kāi)題報(bào)告;
2、環(huán)境工況及需求分析;
3、熱泵循環(huán)熱力計(jì)算:
4、蒸發(fā)器、冷凝器的設(shè)計(jì)計(jì)算;
5、圖紙?jiān)O(shè)計(jì),重點(diǎn)在總圖和各換熱器的設(shè)計(jì)圖紙上。
一、 畢業(yè)設(shè)計(jì)(論文)圖紙內(nèi)容及張數(shù)
設(shè)計(jì)部分:2HP熱泵干燥機(jī)的設(shè)計(jì)
內(nèi)容:1、零部件圖紙(折1#圖紙6張以上)
2、完成干燥機(jī)的設(shè)計(jì)說(shuō)明書(shū);
3、完成干燥機(jī)的設(shè)計(jì);
二、 實(shí)驗(yàn)內(nèi)容及要求
無(wú)
三、 其他
無(wú)
四、 參考文獻(xiàn)
1. 制冷技術(shù)及其應(yīng)用;
2. 制冷原理與設(shè)備;
3. 工程熱力學(xué);
4. 傳熱學(xué);
5. 流體力學(xué);
六、畢業(yè)設(shè)計(jì)(論文)進(jìn)程安排
起訖日期
設(shè)計(jì)(論文)各階段工作內(nèi)容
備 注
文獻(xiàn)綜述、英文資料翻譯
開(kāi)題報(bào)告
系統(tǒng)的設(shè)計(jì)計(jì)算
圖紙?jiān)O(shè)計(jì)
寫(xiě)論文,準(zhǔn)備答辯
4
熱泵干燥機(jī)性能
摘要:我們提出了一個(gè)簡(jiǎn)單的關(guān)于熱泵干燥機(jī)干濕過(guò)程的數(shù)學(xué)模型。一個(gè)叫“接觸系數(shù)”的術(shù)語(yǔ)被用于描述干燥室的理論模型中。關(guān)于干燥率的不同類(lèi)型產(chǎn)品的實(shí)驗(yàn)數(shù)據(jù)被用來(lái)預(yù)測(cè)這個(gè)干燥機(jī)接觸系數(shù)的值。我們研究各種參數(shù)帶來(lái)的影響,例如接觸系數(shù),進(jìn)氣條件和熱泵干燥器性能上的水分去除率。驗(yàn)證得到干燥器的非三維接觸系數(shù)對(duì)于干燥空氣入口溫度是不敏感的。最后,提出用性能圖表來(lái)指導(dǎo)選擇熱泵干燥器的組件。
關(guān)鍵詞 熱泵 干燥 接觸系數(shù) 建模
簡(jiǎn)介
干燥技術(shù)不僅是最古老食品保藏形式之一,也是許多化工和加工工業(yè)中的一個(gè)常見(jiàn)單元操作。在傳統(tǒng)干燥機(jī)中,濕空氣是從干燥機(jī)中排放到大氣中,這會(huì)導(dǎo)致蒸發(fā)的水分含量顯熱和潛熱的損失。相反,結(jié)合熱泵的干燥機(jī),潮濕的空氣離開(kāi)干燥機(jī)后會(huì)被回收,除濕,混合新鮮空氣再預(yù)熱,然后返回到干燥機(jī)中。因此熱泵干燥器是一個(gè)集成的熱泵系統(tǒng)的干燥。
Strommen(1980)用全封閉熱泵干燥機(jī)研究了鱈魚(yú)的干燥特性,并提出了一個(gè)半經(jīng)驗(yàn)?zāi)P蛠?lái)預(yù)測(cè)鱈魚(yú)的干燥速度。 zyalla等人(1982)回顧了各種類(lèi)型的干燥機(jī)的報(bào)道,當(dāng)要求RH30%時(shí),熱泵干燥機(jī)比其它的更有優(yōu)勢(shì)。一個(gè)關(guān)于熱泵除濕/干燥系統(tǒng)的性能實(shí)驗(yàn)研究被TAI等人(1982)報(bào)道。干燥空氣被用于干燥懸浮在干燥器中濕的細(xì)麻布。當(dāng)速度接近為1.6米/秒時(shí),該系統(tǒng)達(dá)到最大的性能系數(shù)COPh。當(dāng)過(guò)熱度是19 K時(shí)可以獲得速度為1.6米/秒的最小功率系數(shù),SPCh。 Skevington等人(1987)報(bào)道了熱泵干燥機(jī)在食品加工過(guò)程中的兩個(gè)新的應(yīng)用程序,即,蘋(píng)果脆片干燥,脫臭的羊肉。
Pendyala等人(1990a)報(bào)道了一個(gè)用來(lái)預(yù)測(cè)綜合熱泵輔助干燥器性能的數(shù)學(xué)模型。 Pendyala 等人(1990b)用兩個(gè)不同的制冷劑,R11和R12來(lái)進(jìn)行了關(guān)于熱泵輔助干燥器的性能的研究。利用空氣流動(dòng)速度的方法對(duì)熱泵輔助干燥器蒸發(fā)器和過(guò)熱工作流體的性能的影響進(jìn)行了研究。 這個(gè)性能系數(shù),COPh,和特定的功耗值,SPCh,分別求出使用R11為35和3500千焦耳/公斤,并對(duì)應(yīng)于R12的值分別為2.5和1800千焦耳/公斤。由Jolly等人(1990)報(bào)道了用詳細(xì)數(shù)學(xué)模型研究關(guān)于熱泵輔助連續(xù)干燥系統(tǒng)的性能報(bào)告,并且這個(gè)模型被JIA等人(1990)用來(lái)針對(duì)幾個(gè)關(guān)鍵系統(tǒng)方面研進(jìn)行究,如蒸發(fā)器空氣旁通比和換熱器的使用的熱泵輔助連續(xù)干燥系統(tǒng)性能。 這個(gè)旁通空氣比,總的質(zhì)量流量和所排出的空氣的質(zhì)量流率被確定為影響系統(tǒng)性能的關(guān)鍵參數(shù)。對(duì)環(huán)境條件一個(gè)開(kāi)放的空氣循環(huán)熱泵干燥器被報(bào)道說(shuō)比簡(jiǎn)單的除濕熱泵干燥機(jī)更為敏感。由Jolly和 Jia 等人(1990)報(bào)道的用來(lái)證實(shí)數(shù)學(xué)模型的實(shí)驗(yàn)研究預(yù)測(cè)了由Clements等人(1993)執(zhí)行的一個(gè)熱泵輔助連續(xù)干燥系統(tǒng)的性能。觀察到進(jìn)入蒸發(fā)器的空氣的相對(duì)濕度從30%至80%增加,特定的水分提取速度給予兩倍增長(zhǎng),SMERh,并發(fā)現(xiàn)了總空氣流量和通過(guò)空氣的比例最佳值。
我們目前的工作是開(kāi)發(fā)一個(gè)數(shù)學(xué)模型來(lái)研究熱泵干燥機(jī)的性能。我們的目標(biāo)是獲得一個(gè)簡(jiǎn)單的關(guān)于通用熱泵輔助機(jī)的設(shè)計(jì)和選擇的指導(dǎo)。我們提出了一個(gè)關(guān)于通用熱泵干燥器的描述,一個(gè)在phychrometric方程基礎(chǔ)上發(fā)展起來(lái)的理論模型,和幫助選擇熱泵輔助機(jī)的性能圖表。
系統(tǒng)
在這項(xiàng)工作中考慮的熱泵輔助干燥機(jī)(HPD)是由七個(gè)主要部分組成,即,一個(gè)壓縮機(jī),一個(gè)外部和內(nèi)部的冷凝器,一個(gè)膨脹閥,一個(gè)蒸發(fā)器,一個(gè)室外空氣預(yù)熱器和再熱發(fā)生器。原理圖的HPD對(duì)低溫和高溫干燥的應(yīng)用程序分別如圖1和圖2所示。在低溫和高溫干燥的空氣濕度過(guò)程分別如圖3和圖4所示。
在低溫干燥(LTD)的應(yīng)用程序,產(chǎn)品從空氣中吸收水分,而后流經(jīng)干燥器。部分濕空氣從干燥器中排放到大氣中。剩余部分會(huì)經(jīng)過(guò)充當(dāng)除濕機(jī)的蒸發(fā)器。在這里,濕空氣會(huì)因?yàn)槔淠龑崃總鹘o熱泵工作流體而失去部分水分。然后除濕后的空氣會(huì)和通過(guò)的空氣混合。這種混著新鮮空氣的新氣流吸入到該系統(tǒng)中,并越過(guò)被冷凝工作流體加熱的冷凝器。室外空氣預(yù)熱器和再熱器在低溫應(yīng)用中一般是從系統(tǒng)脫離。
在高溫干燥(HTD)應(yīng)用程序,離開(kāi)干燥器的部分濕空氣在流過(guò)室外空氣預(yù)熱器時(shí)預(yù)熱進(jìn)入系統(tǒng)的新鮮空氣后被釋放到大氣中。通過(guò)再熱發(fā)生器的預(yù)熱的新鮮空氣在此混合循環(huán)空氣即點(diǎn)8后通過(guò)干燥器,如圖2所示。 在HTD應(yīng)用程序,再熱發(fā)生器的有效熱能被進(jìn)入系統(tǒng)的新鮮空氣有效利用。
理論模型
在HPD中,考慮的主要參數(shù)包括壓縮機(jī),冷凝器和蒸發(fā)器的容量,與室外空氣吸入的百分比和繞過(guò)蒸發(fā)器的空氣的量。參數(shù)的變化被一個(gè)非常狹窄的范圍所限制,因?yàn)樗鼈儽仨毱ヅ渚S護(hù)操作條件所需的HPD和對(duì)干燥機(jī)所需的進(jìn)氣條件,否則會(huì)影響到產(chǎn)品的質(zhì)量。 因此,對(duì)于HPD,知道在干燥過(guò)程中這些參數(shù)的變化對(duì)HPD的性能的影響是很必要的。我們采用基于基本溫濕方程的理論模型來(lái)模擬低溫和高溫?zé)岜幂o助干燥機(jī)的性能,分別如圖1和圖2所示。一個(gè)術(shù)語(yǔ)“接觸系數(shù)”,常用于空調(diào)的應(yīng)用程序(Norman,1983),使用于描述干燥室的模型中,表示農(nóng)產(chǎn)品和干燥介質(zhì)的轉(zhuǎn)移的熱量和質(zhì)量(水分)。
接觸系數(shù)
我們把干燥機(jī)的接觸系數(shù)定義為空氣在干燥機(jī)進(jìn)出口之間的含濕量差值與在等同條件下進(jìn)行的出口為飽和空氣的進(jìn)出口含濕量差值的比值。因此,
(1)
在完全飽和的條件下(100%RH)空氣離開(kāi)干燥器的統(tǒng)一接觸因子。并且,干燥機(jī)的接觸系數(shù)決定了空氣離開(kāi)干燥器的條件。眾所周知,產(chǎn)品的干燥是由復(fù)雜的傳熱傳質(zhì)機(jī)理控制的,而這又是受一些參數(shù)的影響,如流速,溫度,濕度,流經(jīng)干燥器的空氣方向,和干燥器的幾何結(jié)構(gòu)。接觸因子的概念是試圖把干燥機(jī)看成一個(gè)“黑盒子”。作為一個(gè)函數(shù)的上述參數(shù)的干燥機(jī)接觸系數(shù)的值可以通過(guò)執(zhí)行各種改變這些參數(shù)的產(chǎn)品實(shí)驗(yàn)體現(xiàn)。從干燥機(jī)中獲得產(chǎn)品的干燥速率的實(shí)驗(yàn)數(shù)據(jù)和干燥機(jī)接觸系數(shù)有關(guān)。各種產(chǎn)品的干燥特性在 Strommen(1980),往后等人(1980), Ratti 和Crapiste (1992), Hawlader (1991), Brunello 和Claudio (1982) 和 Batsale a和Puigalli (1985)的報(bào)告中報(bào)道的,和干燥器接觸因子的相應(yīng)值列于圖5至圖10中。
Strommen(1980)中干燥空氣進(jìn)入溫度為11°C和26℃給出的損失的鱈魚(yú)的重量百分比,被用來(lái)確定Strommen(1980)中干燥器的接觸系數(shù)。對(duì)于一個(gè)給定的穿過(guò)干燥器和干燥器空氣入口條件空氣流量,進(jìn)入干燥器空氣含濕量,,和在完全飽和的情況下離開(kāi)干燥器的空氣含濕量,,可以從濕度圖上看到。在Strommen(1980)提出的每10小時(shí)對(duì)干燥時(shí)間的鱈魚(yú)的體重?fù)p失百分比被用來(lái)計(jì)算離開(kāi)干燥器的空氣水分除去率,(-)。干燥機(jī)的接觸系數(shù)也可以被定義為干燥器的實(shí)際水份除去率和最大可能的水分去除率的比值。對(duì)于一個(gè)給定的空氣流量,干燥器實(shí)際的水分去除率,是離開(kāi)干燥器的空氣水分含量和進(jìn)入干燥器的空氣水分含量之間的差異,并且在這種情況下,是從鱈魚(yú)的損失重量百分比獲得。另外,完全飽和空氣的水分含量,,和進(jìn)入干燥器的空氣水分含量,,之間的差異決定,在干燥機(jī)中可以實(shí)現(xiàn)的最大可能的水分去除率。在方程(1)中使用的值,和外加每10小時(shí)計(jì)算的干燥值被用來(lái)計(jì)算干燥機(jī)的接觸系數(shù)的相應(yīng)值。圖5示出了這樣運(yùn)算出的干燥機(jī)的接觸系數(shù),并且鱈魚(yú)的重量損失百分比的值也包括在內(nèi)用于比較。無(wú)論干燥器空氣入口條件,干燥器的接觸系數(shù)隨干燥時(shí)間的增加而減小。還應(yīng)當(dāng)注意的是,鱈魚(yú)的重量損失百分比對(duì)干燥時(shí)間,空氣入口條件11℃,60%RH和26°C,60%RH的變化,不反映在干燥機(jī)的接觸系數(shù)的相應(yīng)值。
Saurez等人 (1980)獲得的大豆干燥特性和接觸系數(shù)的預(yù)測(cè)值如圖6中所示。由Saurez等人(1980年)研究了在不同的干燥空氣入口條件下大豆的干燥行為。根據(jù)不同的干燥空氣進(jìn)氣條件。對(duì)于一個(gè)給定的時(shí)間t,則和的值從空氣入口條件下獲得,的值從大豆的水分含量預(yù)測(cè)得到,這些值是在方程(1)中用來(lái)計(jì)算干燥機(jī)的接觸系數(shù)的。大豆的水分含量和干燥器的接觸系數(shù)隨干燥時(shí)間的增加減少。這是顯而易見(jiàn)的,從圖6中可以看出大豆的干燥速率受進(jìn)氣溫度強(qiáng)烈影響,而接觸系數(shù)很少受進(jìn)氣溫度的影響。
圖7給出了 由Ratti 和 Crapiste (1992)獲得的在兩個(gè)不同的進(jìn)氣口的條件45℃,50%RH和45℃,11%RH下的馬鈴薯切片水分含量比。這些接觸系數(shù)的值也在圖7所示。時(shí)間t內(nèi)預(yù)測(cè)水分去除量所用的水分含量比率,是在時(shí)間t的馬鈴薯磁盤(pán)水分含量和馬鈴薯磁盤(pán)初始水分含量的比值。 和接觸因子的值都被進(jìn)氣的相對(duì)濕度的強(qiáng)烈影響,并隨干燥時(shí)間的增加而減少。
圖8給出了由Hawlader等人(1991)報(bào)告的西紅柿的干燥特性和干燥機(jī)的接觸系數(shù)相應(yīng)值。對(duì)于一個(gè)給定的干燥機(jī)空氣進(jìn)氣條件,Hawlader等人 (1991)研究了在80℃DBT,355℃下WBT和80℃DBT,36.6℃WBT的干燥空氣進(jìn)氣條件下的西紅柿的干燥特性的空氣速度的效果。圖8給出的了空氣流速為0.4米/秒和1.8米/秒的西紅柿重量損失的值和相應(yīng)由方程(1)預(yù)測(cè)的接觸系數(shù)的值,在圖8中我們可以看出,空氣流速在西紅柿的重量損失和干燥機(jī)的接觸系數(shù)方面有顯著影響,空氣流速的增加增加了西紅柿的重量損失,并降低的干燥機(jī)的接觸系數(shù)。
另外,圖5和6展現(xiàn)了進(jìn)入的空氣的干球溫度在干燥機(jī)的接觸系數(shù)方面的影響,而圖7和圖8分別示出,空氣的相對(duì)濕度和空氣流速在接觸系數(shù)方面的影響。接觸系數(shù)很少被進(jìn)氣溫度影響,如圖5和圖6中所示,然而它是被空氣的相對(duì)濕度及空氣流速?gòu)?qiáng)烈影響著,分別如圖7和8所示。這表明,對(duì)于一個(gè)給定產(chǎn)品,干燥機(jī)的接觸系數(shù)和干燥機(jī)進(jìn)氣溫度是相對(duì)獨(dú)立的,并可能取決于流速和進(jìn)入干燥機(jī)的空氣的相對(duì)濕度。這意味著,對(duì)于一個(gè)獲得給定干燥空氣的入口溫度和濕度的干燥機(jī)接觸系數(shù)可以用來(lái)描述其他具有相同的相對(duì)濕度的干燥空氣進(jìn)氣條件下的產(chǎn)品的干燥速率。
圖9呈現(xiàn)了Brunello和Claudio(1982)所報(bào)告的高粱顆粒的水分含量和由方程(1)預(yù)測(cè)的接觸系數(shù)的相應(yīng)值的。Brunello和Claudio(1992)研究了不同水分含量的高粱顆粒的干燥行為。正如預(yù)期的那樣,高粱粒的水分含量和接觸系數(shù)隨干燥時(shí)間的增加而減少。從圖9中可見(jiàn),經(jīng)過(guò)測(cè)試的高粱顆粒的樣品的初始水分含量在高粱粒的干燥速率以及干燥機(jī)上的接觸系數(shù)方面不具有顯著影響。
在圖10中顯示了由Batsale和Puigalli(1985年)報(bào)告的杏仁的干燥特性的實(shí)驗(yàn)結(jié)果和干燥機(jī)接觸系數(shù)的相應(yīng)值。杏仁的水分含量和接觸系數(shù)的值隨著干燥時(shí)間的增加而減少。
提法
在低溫應(yīng)用中,在點(diǎn)1處進(jìn)入干燥室的干燥空氣中從干燥機(jī)的產(chǎn)品吸收水分到達(dá)點(diǎn)2。在點(diǎn)2的濕氣干球溫度T2,可以用函數(shù)的接觸系數(shù)方程(1)計(jì)算。從接觸系數(shù)的定義,
(2)
哪里
在低溫的應(yīng)用程序中,濕空氣中的一部分(1-X)被排到大氣中,在高溫的應(yīng)用程序中,該空氣流在它被釋放到大氣中之前會(huì)先通過(guò)室外空氣預(yù)熱器來(lái)回收熱量。
對(duì)于公知的壓縮機(jī)容量和性能系數(shù)COP,吸入高溫?zé)岜酶稍餀C(jī)的空氣的條件到繪制在點(diǎn)8處,通過(guò)室外空氣預(yù)熱器和再熱發(fā)生器已經(jīng)用下面給出的公式計(jì)算出。
離開(kāi)室外空氣預(yù)熱器的空氣溫度T7,被給定為
(3)
離開(kāi)再熱發(fā)生器的空氣溫度T8,被給定為
ASHRAE(1989)推薦的下面的等式被用來(lái)預(yù)測(cè)在點(diǎn)8處(T8)的空氣的溫度。
(4)
在高溫應(yīng)用中在點(diǎn)6的離開(kāi)冷凝器的空氣的條件可以在點(diǎn)1和點(diǎn)8的空氣條件的基礎(chǔ)上計(jì)算出來(lái),這樣
和
(5)
在低溫應(yīng)用中,離開(kāi)冷凝器的空氣的條件和進(jìn)入干燥機(jī)的空氣條件是一樣的。
由于離開(kāi)冷凝器的空氣條件和冷凝器的容量是已知的,在點(diǎn)5處進(jìn)入冷凝器的空氣的條件可以被計(jì)算,
從ASHRAE(1989)的相關(guān)提示預(yù)測(cè)的點(diǎn)5處的空氣的溫度T5被給定為
(6)
因?yàn)辄c(diǎn)5和點(diǎn)0的的空氣條件是已知的,所以在低溫應(yīng)用程序中點(diǎn)4的空氣的條件可以用混合流方程預(yù)測(cè)。因此,
和
(7)
在高溫干燥的應(yīng)用中,因?yàn)闆](méi)有除濕空氣和室外空氣之間的混合,在點(diǎn)4的空氣條件和點(diǎn)5處的保持相同。
所述蒸發(fā)器的容量Qe,為公知的壓縮機(jī)和冷凝器容量計(jì)算,可以表示為
(8)
冷凝水的焓,點(diǎn)3可表示為
(9)
等式(9)在等式(8)中的帶入
(10)
其中C1= 4.19, 和C2= 0.168 15.
通過(guò)蒸發(fā)器的空氣百分比Y可以計(jì)算為
(11)
解決數(shù)學(xué)模型
對(duì)于一個(gè)給定的干燥空氣進(jìn)氣條件和干燥機(jī)的接觸系數(shù),離開(kāi)干燥器的空氣條件是由方程(2)計(jì)算得到。從零變化到統(tǒng)一的接觸系數(shù),用于定義從產(chǎn)物中除去的水分的量。對(duì)應(yīng)的最大可能的水分去除率的統(tǒng)一的接觸因子可以通過(guò)干燥機(jī)獲得,而零值代表的接觸因子表示沒(méi)有水分從產(chǎn)品流過(guò)干燥介質(zhì)的干燥過(guò)程/干燥機(jī)。因此,無(wú)量綱接觸系數(shù)的使用簡(jiǎn)化了計(jì)算過(guò)程。
在HPD中再循環(huán)的空氣的量X,被假定來(lái)解決這個(gè)模型,并且作為決定系統(tǒng)容量的主要參數(shù)之一的X的值通常是在干燥產(chǎn)品和室外空氣條件的類(lèi)型的基礎(chǔ)上選擇的。
在LTD的應(yīng)用程序中,對(duì)于公知的壓縮機(jī)容量,,和性能系數(shù),COP,空氣進(jìn)入冷凝器的條件由等式(6)預(yù)測(cè)得到。在點(diǎn)5和點(diǎn)0的已知的空氣條件被用于等式(7)中來(lái)預(yù)測(cè)點(diǎn)4的空氣條件。
在HTD應(yīng)用程序中,假定發(fā)電機(jī)的熱損失和室外空氣預(yù)熱器的有效性,并且方程(3)和(4)被用來(lái)計(jì)算在點(diǎn)8處的吸入系統(tǒng)的新鮮空氣的條件。方程(5)是點(diǎn)1和點(diǎn)8處的空氣流速和溫度的函數(shù)方程,它被用于預(yù)測(cè)點(diǎn)6處空氣的溫度,至于有沒(méi)有點(diǎn)5和4之間的空氣流混合,和LTD的應(yīng)用程序中不一樣,LTD的應(yīng)用程序中室外和再循環(huán)的空氣流會(huì)在點(diǎn)5處混合,點(diǎn)4的空氣條件保持不變。
在LTD和HTD應(yīng)用程序中,點(diǎn)4和點(diǎn)2外加計(jì)算的空氣條件被用于方程(10)來(lái)預(yù)測(cè)離開(kāi)蒸發(fā)器的點(diǎn)3的空氣溫度,T3,然后用在方程(11)來(lái)計(jì)算空氣經(jīng)過(guò)蒸發(fā)器的百分比。
結(jié)果
已開(kāi)發(fā)一種計(jì)算機(jī)程序來(lái)計(jì)算HPD性能上的重要變量的影響。圖11示出了在15℃,60%RH和15℃,70%RH干燥空氣進(jìn)氣條件下干燥機(jī)的水分除去率的接觸系數(shù)的影響。水分去除率隨接觸系數(shù)的增加而增加??梢詮膱D11中推斷,對(duì)于一個(gè)給定的干燥機(jī)空氣進(jìn)氣溫度和一個(gè)固定接觸系數(shù)值,水分去除率是空氣相對(duì)濕度的函數(shù),并隨相對(duì)濕度的增加而減小。圖12中呈現(xiàn)了特定的水分提取率,SMERh的變化,其被定義為從干燥機(jī)除去轉(zhuǎn)變?yōu)檩斎敫稍餀C(jī)的能量的水分,與增加的水分去除率的比值。正如預(yù)期的那樣,SMERh,隨水分去除率的增加而增加。在圖13呈現(xiàn)了特定的功率消耗,SPCh,和干燥機(jī)中增加的水分去除率的變化。SPCh,是輸入到干燥器的能量和干燥器中除去的水分的比率。隨著水分除去率的增加,SPCh,初始啟動(dòng)時(shí)以很快的速度下降,然后隨著水分去除速率的近一步增加而緩慢下降。冷凝器的特定功耗,SPCc,(用于冷凝器的能量與從干燥器中除去的水分的比值),和蒸發(fā)器的特定的功耗,SPCe(用于蒸發(fā)器的能量和從干燥器中除去的水分的比值)干燥機(jī)上的水分去除率分別在圖14和圖15所示。SPCc和SPCe的值,隨著干燥機(jī)的水分去除率的增加而減少。
性能圖表
基于一個(gè)參數(shù)分析,可直接用于熱泵干燥機(jī)的各種部件的選擇的性能圖表被準(zhǔn)備好了。兩種性能圖表,每個(gè)都包括標(biāo)記(1),(2), (3)和(4)的四個(gè)模塊,繪制在15℃和75℃下的空氣進(jìn)氣條件,分別在圖16和圖17所示。圖表繪制了熱泵干燥機(jī)處理95%的再循環(huán)空氣和5%的室外空氣。其他參數(shù)的假定值如下
(1)HPD的性能系數(shù):8
(2)室外空氣預(yù)熱器的有效性:O.7
(3)發(fā)電機(jī)的熱損失:60%
(4)傳輸損耗:20%
??(從發(fā)電機(jī)到壓縮機(jī))
圖16和17標(biāo)記(1)的模塊,也被稱(chēng)為輸入模塊,提出在干燥室每千克每秒的干燥空氣除去的水分的量對(duì)在蒸發(fā)器上每秒冷凝的水分的量的效果。對(duì)于干燥器中一個(gè)已知的水分去除率,在蒸發(fā)器冷凝的水分的量可以從該模塊中得到。壓縮機(jī)的容量信息可以從模塊(2)得到,或者是壓縮機(jī)的模塊,在該模塊中熱泵干燥器的特定的功率消耗,SPCh,和在蒸發(fā)器的冷凝水的量是有關(guān)的。因此,壓縮機(jī)的容量可以直接從以在蒸發(fā)器的冷凝水的量的基礎(chǔ)上建立起來(lái)的模塊中讀出。模塊(3)或蒸發(fā)器模塊提供了蒸發(fā)器能力的信息,因?yàn)樗@示出特定的功耗,SPDh,和蒸發(fā)器的能力之間的關(guān)系。模塊(4)或冷凝器模塊敘述了冷凝器和蒸發(fā)器的能力。對(duì)于一個(gè)給定的蒸發(fā)器能力和從模塊(1)獲得的蒸發(fā)器冷凝,冷凝器的容量可以從該模塊得到。
干燥機(jī)的熱泵組件選擇的過(guò)程如下:
(1) 首先,對(duì)于一個(gè)給定的被干燥的產(chǎn)品,每秒每公斤干燥空氣要除去的水分的量是被選擇的。
(2)在模塊(1),對(duì)于不同的干燥機(jī)的空氣入口條件,每千克每秒的干燥空氣除去的水分的量和 蒸發(fā)器中用于冷凝的水分的量是不一樣的,因此,對(duì)于一個(gè)已知的水分去除率,每秒每公斤的干燥空氣,垂直線(xiàn)必須要繪制到點(diǎn)(a)來(lái)選擇干燥器空氣入口條件。從點(diǎn)(a)所示,模塊(1)的y軸的水平線(xiàn)確定了蒸發(fā)器中水分冷凝的量。
(3)現(xiàn)在,為了預(yù)測(cè)所需的壓縮機(jī)的容量,從(a)點(diǎn)繪制一條水平線(xiàn)到模塊(2),一直延伸到它滿(mǎn)足和模塊(1)中(b)點(diǎn)相同的干燥空氣入口條件。從(b)點(diǎn),一條垂直線(xiàn)繪制到模塊(2)的x軸,以選擇壓縮機(jī)容量。
(4) 為了選擇蒸發(fā)器的容量,從(b)點(diǎn),一條垂直線(xiàn)一直繪制到模塊(3)(c)點(diǎn)。從(c)點(diǎn),一條水平線(xiàn)繪制到模塊(3)的y-軸來(lái)讀取蒸發(fā)器的容量。冷凝器的容量(包括內(nèi)部和外部的冷凝器的容量),現(xiàn)在可以分別從模塊(2)和(3)得到的壓縮機(jī)和蒸發(fā)器的容量的基礎(chǔ)上的計(jì)算。
(5)為了獲得內(nèi)部冷凝器的容量,一條從(c)點(diǎn)繪制到模塊(4)的水平線(xiàn)滿(mǎn)足了為繪制在模塊(1)(d)點(diǎn)選擇的干燥空氣入口條件的曲線(xiàn)。從點(diǎn)(d)繪制一條垂直線(xiàn)到模塊(4)的x-軸來(lái)讀取內(nèi)部冷凝器的容量。從冷凝器的總?cè)萘亢蛢?nèi)部冷凝器的容量的值,可以計(jì)算出外部冷凝器的容量。在LTD應(yīng)用程序中外部冷凝器的使用都是很必要的。
應(yīng)當(dāng)指出的是, 因?yàn)榇藞D表需要干燥機(jī)水分除去的速率的信息,水分去除率可以在恒定干燥速率條件下獲得,但這通常會(huì)高于干燥速率降低條件下的,所以被用在這些組件的選擇上以確保在不利的條件下干燥機(jī)的有效運(yùn)行。在恒定的干燥速率的條件下干燥機(jī)的接觸系數(shù)可以用在方程(1)中來(lái)實(shí)現(xiàn)水分去除率預(yù)測(cè)。
結(jié)論
一個(gè)基于基本溫濕方程的發(fā)展起來(lái)的理論模型研究了HPD的性能。接觸系數(shù)的概念被用于數(shù)學(xué)模型來(lái)描述在產(chǎn)品和干燥介質(zhì)之間的熱量和質(zhì)量(濕度)的傳輸過(guò)程。在不同的空氣進(jìn)氣條件下的不同類(lèi)型的產(chǎn)品的預(yù)測(cè)接觸系數(shù)的值被提出。結(jié)果表明,特定的水分提取率SMERh和特定的能量消耗SPCh都受干燥機(jī)的接觸系數(shù)強(qiáng)烈影響。干燥機(jī)的接觸系數(shù)只對(duì)進(jìn)入干燥機(jī)的空氣的相對(duì)濕度和流速敏感。此信息將在實(shí)驗(yàn)中有用,因?yàn)樗试S不同溫度和相同濕度下的產(chǎn)品的干燥速率從一個(gè)單一的測(cè)試中估計(jì)。
使用數(shù)學(xué)模型生成的信息的基礎(chǔ)上準(zhǔn)備的性能圖表被選作為HPD的組件的選擇指南。實(shí)驗(yàn)將與在不同的干燥的空氣入口條件和空氣流量和干燥機(jī)的參數(shù)下的不同類(lèi)型的產(chǎn)品進(jìn)行分析,來(lái)驗(yàn)證數(shù)學(xué)模型和預(yù)測(cè)這些干燥機(jī)的接觸系數(shù)。
命名法
CF 接觸系數(shù), 無(wú)量綱
COP 性能系數(shù), 無(wú)量綱
DBT 干球溫度, ℃
Cpa 空氣比熱容, kJ/kg℃
H2 點(diǎn)2的濕空氣的焓, kJ/kg
H3 點(diǎn)3的濕空氣的焓, kJ/kg
H4 點(diǎn)4的濕空氣的焓,kJ/kg
H5 點(diǎn)5的空氣的焓, kJ/kg
H6 點(diǎn)6的空氣的焓, kJ/kg
H7 點(diǎn)7的空氣的焓, kJ/kg
H8 點(diǎn)8的室外空氣的焓,kJ/kg
H3W 點(diǎn)3濃縮水的焓, kJ/kg
HLG 發(fā)電機(jī)熱損失, 百分比
QC 冷凝器容量, kW
QE 蒸發(fā)器容量, kW
QG 發(fā)電機(jī)輸入功率, kW
QR 再熱器容量, kW
SMER 特定水分提取速率, kg/kWh
SPC 單位耗能量, kJ/kg
T0 點(diǎn)0室外空氣干球溫度, ℃
T1 點(diǎn)1干燥空氣干球溫度, ℃
T2 點(diǎn)2濕空氣的干球溫度, ℃
T3 點(diǎn)3除濕空氣的干球溫度 ℃
T4 點(diǎn)4空氣干球溫度, ℃
T5 點(diǎn)5空氣干球溫度, ℃
T6 點(diǎn)6空氣干球溫度, ℃
T7 點(diǎn)7室外空氣干球溫度, ℃
T8 點(diǎn)8室外空氣干球溫度, ℃
T2WB 點(diǎn)2濕空氣的濕球溫度,℃
點(diǎn)2濕空氣的含濕量, g/kg (空氣)
點(diǎn)3除濕空氣的含濕量, g/kg (空氣)
點(diǎn)4空氣的含濕量, g/kg (空氣)
點(diǎn)5空氣的含濕量, g/kg (空氣)
點(diǎn)8空氣的含濕量, g/kg (空氣)
WBT 濕球溫度, ℃
WCO 壓縮機(jī)工作, kW
WP 每克產(chǎn)品含水量
X 部分再循環(huán)空氣量
X0 產(chǎn)品初始含水量, g
XT 在時(shí)間T的產(chǎn)品含水量, g
Y 通過(guò)蒸發(fā)器的空氣百分比
下標(biāo)
c 冷凝器
co 壓縮機(jī)
d 干燥機(jī)
e 蒸發(fā)器
h 熱泵干燥機(jī)
參考文獻(xiàn)
[1] ASHRAE (1989). Fundamentals Handbook, ASHRAE, Atlanta, GA.
[2] Batsale, J. C.and Puigalli, J. R. (1985). 'Drying of crop products with a shell: experimental approach and modelling, its applications to hazelnuts', Drying '85, Hemisphere Publishing Corporation, New York 410-414.
[3] Brunello, G. and Claudio, A. 0.(1982). 'The kinetics of sorghum grains drying in a mechanically stirred bed dryer', Drying '82, Hemisphere Publishing Corporation, New York 56-60.
[4] Clements, S., Jia, Xiguo and Jolly, Peter (1993). 'Experimental verification of a heat pump assisted continuous dryer simulation model', Int. Journal of Energy Research, 17, 19-28.
[5] Hawlader, M. N. A., Uddin, M. S., Ho, J. C. and Teng. A. B. (1991). 'Drying characteristics of tomatoes', Journal of Food Engineering, 14,259-268.
[6] Jia, X., Jolly, Peter and Clements, Shane (1990). 'Heat pump assisted continuous drying, Part 2: Simulation results', Znt. Journal of Energy Research, 14, 771-782.
[7] Jolly, P., Jia, Xiguo and Clements, Shane (1990). 'Heat pump assisted continuous drying, Part 1: Simulation model', Znt. Journal of Energy Research, 14, 757-770.
[8] Keey, R. B. (1978). Introduction of indusmul drying operatiotrr, Pergamon Press, Oxford.
[9] Mujumdar, Arun S. (1987). Handbook of industrial drying, Marcel Dekker, New York.
[10] Norman, C. Harris, (1983). Modern air conditioningpractice. McGraw-Hill, New York.
[11] Pendyala, V. R., Devotta, S. and Patwardhan, V. S. (1990a). 'Heat-pump-assisted dryer, Part 1: Mathematical model', Int. Journal of Enem Research, 14, 479-492.
[12] Pendyala, V. R., Devotta, S. and Patwardhan, V. S. (1990b) 'Heat-pump-assisted dryer, Part 2: Experimental study', Znt. Journal of Energy Research, 14,493-507.
[13] Ratti, C. and Crapiste, G. H. (1992). 'A generalized drying curve for shrinking food materials', Drying '92, Elsevier, New York, Part A 864-873.
[14] Saurez, C., Viollaz Pascual and Chirife, Jorge (1980), 'Kinetics of soybean drying', Drying '80 Hemisphere Publishing Corporation, New York 251-255.
[15] Skevington, S. (1987). 'Two novel applications of heat pumps in food processing', Australian Refrigration Air Conditioning, and Heating, 41 27-31.
[16] Strommen, Ingvald (1980). ‘Drying of heavily salted fish’, Dying ’80 Hemisphere Publishing Corporation, New York Vol. 2, 289-293.
[17] Tai, K. W., Zyalla, R., Devotta, S., Diggory, P. J., Watson, F. A. and Holland, F. A. (1982a). ‘The potential for heat pumps in drying and dehumidification systems, 11: An experimental assessment of the dehumidification characteristics of a heat pump dehumidification system using R114’, Energy Research, 6, 323-331.
[18] Tai, K. W., Zyalla, R., Devotta, S., Diggory, P. J. Watson, F. A. and Holland, F. A. (1982b). ‘The potential for heat pumps in drying and dehumidification systems, 111: An experimental assessment of the dehumidification characteristics of a heat pump dehumidification system using R114, Energy Research, 6, 333-340.
[19] Zyalla, R., Abbas, S. P., Tai, K. W., Devotta, S., Watson, F. A. and Holland, F. A. (1982). ‘The potential for heat pumps in drying and dehumidification systems, I: Theoretical considerations’, Energy Research, 6, 305-322.
開(kāi)題報(bào)告
學(xué)生姓名: 學(xué) 號(hào):
所在學(xué)院:
專(zhuān) 業(yè)
設(shè)計(jì)(論文)題目: 2HP熱泵干燥機(jī)的設(shè)計(jì)
指導(dǎo)教師:
年 12 月 26 日
開(kāi)題報(bào)告填寫(xiě)要求
1.開(kāi)題報(bào)告(含“文獻(xiàn)綜述”)作為畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。此報(bào)告應(yīng)在指導(dǎo)教師指導(dǎo)下,由學(xué)生在畢業(yè)設(shè)計(jì)(論文)工作前期內(nèi)完成,經(jīng)指導(dǎo)教師簽署意見(jiàn)及所在專(zhuān)業(yè)審查后生效;
2.開(kāi)題報(bào)告內(nèi)容必須用黑墨水筆工整書(shū)寫(xiě)或按教務(wù)處統(tǒng)一設(shè)計(jì)的電子文檔標(biāo)準(zhǔn)格式(可從教務(wù)處網(wǎng)頁(yè)上下載)打印,禁止打印在其它紙上后剪貼,完成后應(yīng)及時(shí)交給指導(dǎo)教師簽署意見(jiàn);
3.“文獻(xiàn)綜述”應(yīng)按論文的格式成文,并直接書(shū)寫(xiě)(或打?。┰诒鹃_(kāi)題報(bào)告第一欄目?jī)?nèi),學(xué)生寫(xiě)文獻(xiàn)綜述的參考文獻(xiàn)應(yīng)不少于15篇(不包括辭典、手冊(cè));
4.有關(guān)年月日等日期的填寫(xiě),應(yīng)當(dāng)按照國(guó)標(biāo)GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時(shí)間表示法》規(guī)定的要求,一律用阿拉伯?dāng)?shù)字書(shū)寫(xiě)。如“2004年4月26日”或“2004-04-26”。
畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告
1.結(jié)合畢業(yè)設(shè)計(jì)(論文)課題情況,根據(jù)所查閱的文獻(xiàn)資料,每人撰寫(xiě)
2000字左右的文獻(xiàn)綜述:
文 獻(xiàn) 綜 述
1、 課題背景
隨著世界經(jīng)濟(jì)的發(fā)展、世界人口的劇增和人民生活水平的不斷提高,世界能源的需求量持續(xù)增大,能源資源的爭(zhēng)奪日趨激烈,如何節(jié)能已經(jīng)成為當(dāng)今世界的一大主題。干燥是一項(xiàng)耗能較大的工藝過(guò)程,大約生產(chǎn)過(guò)程中總能耗的6%用于干燥過(guò)程,所以干燥過(guò)程具有很大的節(jié)能潛力。熱泵是利用一定量的低溫?zé)崮軄?lái)獲得較高溫度、可供利用熱能的熱力系統(tǒng),它可以有效的回收濕空氣中的熱量,減少循環(huán)空氣的直接排放。
2、 熱泵干燥機(jī)簡(jiǎn)介
熱泵實(shí)質(zhì)上是一種熱量提升裝置,高溫?zé)岜煤娓蓹C(jī)組利用逆卡諾[23]原理,從周?chē)h(huán)境中吸取熱量,并把它傳遞給被加熱的對(duì)象(溫度較高的物體),其工作原理與制冷機(jī)相同,都是按照逆卡諾循環(huán)工作的,所不同的只是工作溫度范圍不一樣。
3、 熱泵干燥機(jī)的基本原理
熱泵干燥裝置主要由熱泵和干燥器兩大系統(tǒng)組成。熱泵干燥機(jī)組主要由熱泵(制冷)系統(tǒng)(壓縮機(jī)、冷凝器、蒸發(fā)器、節(jié)流裝置等)和空氣回路(離心風(fēng)機(jī)和干燥室等)組成。如圖1,高溫干熱空氣進(jìn)入干燥室,帶走被干燥物體的水分,變?yōu)闈駸峥諝獬鰜?lái);然后進(jìn)入蒸發(fā)器進(jìn)行冷卻除濕,首先冷卻至露點(diǎn),再進(jìn)一步冷卻使水分從空氣中凝結(jié)出來(lái),然后進(jìn)入冷凝器處吸收熱量后,變?yōu)楦邷馗蔁峥諝猓龠M(jìn)入干燥室內(nèi)提高溫度及吸收被干燥物體的水分,完成循環(huán)。而制冷劑在蒸發(fā)器中吸收來(lái)自干燥過(guò)程排放廢氣中的熱量,由液體蒸發(fā)為蒸汽,經(jīng)壓縮機(jī)壓縮后送到冷凝器中,在高壓下制冷劑冷凝液化,放出高溫的冷凝熱去加熱來(lái)自蒸發(fā)器的降溫去濕的低溫干空氣,把它加熱到要求的溫度后進(jìn)入干燥室內(nèi)作為干燥介質(zhì)循環(huán)使用,液化后的制冷劑經(jīng)膨脹閥再次回到蒸發(fā)器[1]內(nèi)。
三、評(píng)價(jià)干燥機(jī)工作效率的主要指標(biāo)
在干燥技術(shù)中評(píng)價(jià)其效率的指標(biāo)[2-3]有:SPC(除濕能耗比kJ/kg)、COP(熱泵系統(tǒng)的性能系數(shù))、MER(單位時(shí)間除濕量kg/h)、SMER(單位能耗除濕量kg/kW·h)
SPC 是評(píng)價(jià)一個(gè)干燥機(jī)性能的傳統(tǒng)指標(biāo),是耗功量與除濕量之比,COP 只反映了熱泵系統(tǒng)的性能而沒(méi)有考慮整個(gè)干燥系統(tǒng),MER 考慮的是干燥系統(tǒng)干燥產(chǎn)品的輸出量,SMER 能夠較好的反應(yīng)能量利用效率。一般主要使用它作為干燥機(jī)工作效率的主要指標(biāo)。
單位能耗水分排除量:SMER=水分蒸發(fā)量/干燥機(jī)消耗的能量 (kg/kW·h)
4、 使用場(chǎng)所
高溫?zé)岜煤娓蓹C(jī)組適用于賓館酒店的床上用品的烘干,海產(chǎn)品、蔬菜脫水、AD黑銀耳、瓜子、花生、果蔬、肉制品、腸衣、煙葉、皮革、香菇、枸杞、干果、蚊香、貢香、布料、衣物、糧食谷物、掛面、腐竹、肥料、藥品、中藥材、紙品、木材[16-18,22]、種子、污泥、石膏、五金產(chǎn)品、冶金產(chǎn)品、礦山副產(chǎn)品、化工產(chǎn)品、煙氣脫硫石膏、粘土、牧草、烤煙、粉煤、煤泥、褐煤等的烘干。在工業(yè)熱水方面,還可滿(mǎn)足電鍍廠電鍍液的恒溫、屠宰場(chǎng)高溫?zé)崴募訜岷捅?、星?jí)酒店高溫?zé)崴墓?yīng)和工業(yè)企業(yè)高溫?zé)崴男枨蟆?
五、技術(shù)前景
物料烘干過(guò)程是一個(gè)巨大的耗能過(guò)程,據(jù)統(tǒng)計(jì),在大多數(shù)發(fā)達(dá)國(guó)家里用于烘干所消耗的能量占全國(guó)總能耗的7%-15%,而熱效率僅為25%-50%,并且大部分烘干過(guò)程特別是對(duì)熱敏性物料(例如食品和生物物料)都會(huì)對(duì)其色澤、營(yíng)養(yǎng)、風(fēng)味和組織產(chǎn)生影響。熱泵烘干技術(shù)[24-28]具有能源消耗少,環(huán)境污染小、烘干品質(zhì)高、適用范圍廣等優(yōu)點(diǎn),其優(yōu)異的節(jié)能效果已被國(guó)內(nèi)外的各種試驗(yàn)研究所證明。
六、熱泵干燥機(jī)的特性
1、 熱泵干燥機(jī)的優(yōu)點(diǎn)
(1) 節(jié)能。熱泵干燥機(jī)的最大優(yōu)勢(shì)就在于其節(jié)能效率高,傳統(tǒng)的開(kāi)式電加熱干燥法將干燥室出來(lái)的濕度大以及溫度相對(duì)高的空氣直接排入大氣,浪費(fèi)了其中大量的顯熱和潛熱, 且開(kāi)式循環(huán)的性能隨環(huán)境空氣狀況的變化而變化。而熱泵干燥系統(tǒng)將從干燥室出來(lái)的含有相當(dāng)焓值的熱能的濕熱空氣,通過(guò)蒸發(fā)器回收部分熱量,再進(jìn)入熱泵系統(tǒng)循環(huán)。
(2) 干燥的質(zhì)量比較好。因?yàn)闊岜酶稍餀C(jī)一般都會(huì)安裝在線(xiàn)傳感器和較精確的控制裝置,然后通過(guò)控制熱泵干燥機(jī)的蒸發(fā)器和冷凝器的溫度來(lái)實(shí)現(xiàn)實(shí)時(shí)控制。
(3) 與其他干燥裝置相比,更加節(jié)約干燥時(shí)間。低溫干燥技術(shù)一般需時(shí)較長(zhǎng),傳統(tǒng)的干燥器在干燥后期由于干燥介質(zhì)的濕度與干燥物料的濕度相差不大,從而導(dǎo)致效率降低。而熱泵干燥機(jī)組可以利用蒸發(fā)器的除濕作用使效率提高。
(4) 與其他傳統(tǒng)的干燥技術(shù)相比,利用熱泵干燥技術(shù)將減少CO2 的排放,降低環(huán)境污染。
2、熱泵干燥機(jī)的缺點(diǎn)
(1) 初投資比較大。
(2) 維護(hù)要求比較高。熱泵干燥機(jī)組的壓縮機(jī)、熱交換器等都需要定期檢查和維護(hù),使機(jī)組在良好狀態(tài)下運(yùn)行。
(3) 制冷劑泄漏。因?yàn)檠b置設(shè)有加壓系統(tǒng),可能會(huì)引起管道開(kāi)裂等,從而導(dǎo)致制冷劑泄漏。
七、國(guó)內(nèi)外熱泵干燥機(jī)的一些技術(shù)改進(jìn)與改革
1、采用聯(lián)合熱泵干燥機(jī):在熱泵干燥系統(tǒng)中采用高頻電磁波或紅外線(xiàn)加熱源作為輔助的加熱,將提高干燥速度,同時(shí)減少熱泵系統(tǒng)本身的熱負(fù)載量。
2、在蒸發(fā)器前布置外部換熱器:將外部換熱器布置在蒸發(fā)器入口前,能將干燥后的潮濕空氣中的顯熱和部分潛熱排入環(huán)境,降低了蒸發(fā)器負(fù)荷,提高了除濕效率,但受環(huán)境影響較大。
3、安裝回?zé)崞鳎喊惭b回?zé)崞鱗4]的熱泵可以利用從蒸發(fā)器出來(lái)的冷空氣來(lái)預(yù)冷蒸發(fā)器前的高溫高濕空氣,既可以降低蒸發(fā)器負(fù)荷,又提高了除濕效率,同時(shí)不受環(huán)境影響,還可回收部分熱量到冷凝器發(fā)揮作用。
4、加裝輔助冷卻器:在蒸發(fā)器前布置輔助冷卻器[4],可以減小蒸發(fā)器的熱負(fù)荷,減小傳熱溫差,降低了系統(tǒng)的能量損失。
5、利用相變材料貯熱的熱泵干燥機(jī):一般地,當(dāng)熱泵干燥機(jī)的干燥溫度達(dá)到干燥所需的溫度后,常采用尾氣排放或者調(diào)節(jié)輔助冷凝器的流量來(lái)控制干燥溫度的穩(wěn)定。因此使得機(jī)組排放掉部分熱量,使總能耗增加。我們可以采用相變材料的貯能特性,回收這部分能量,提高熱泵干燥機(jī)組的節(jié)能效果[5]。并且在需要熱量時(shí)將貯存的能量釋放給干燥空氣。經(jīng)過(guò)實(shí)驗(yàn)證明,相變材料在熱泵干燥機(jī)組中的應(yīng)用大有節(jié)能潛力。
6、采用高溫工質(zhì)的熱泵干燥機(jī):在熱泵干燥機(jī)組中使用高溫工質(zhì)[6],達(dá)到提高除濕機(jī)的出口風(fēng)溫的目的。目前有清華大學(xué)研制的高溫環(huán)保工質(zhì)HTR01,配合R22 壓縮機(jī)組成熱泵循環(huán)的高溫除濕干燥機(jī)[15]。
7、在熱泵干燥機(jī)組中采用流化床:目前應(yīng)用的熱泵干燥裝置大多使用箱式結(jié)構(gòu)的,干燥室內(nèi)的傳熱傳質(zhì)效率低,干燥不均勻、干燥時(shí)間長(zhǎng),干燥產(chǎn)品質(zhì)量受到影響。而在干燥系統(tǒng)中采用熱泵流化床[7]將進(jìn)一步的發(fā)揮熱泵低溫干燥的優(yōu)勢(shì),并且由于顆粒懸浮于干燥介質(zhì)中,使得干燥介質(zhì)與固體接觸面積較大,加上物料劇烈攪動(dòng),大大的減少了氣膜阻力,使得傳熱傳質(zhì)效率高。
8、采用輔助蒸發(fā)器:輔助蒸發(fā)器[8]主要用于快速泵熱升溫,將干燥室溫度快速升高到干燥所需的溫度。經(jīng)試驗(yàn)研究得出:具有輔助蒸發(fā)器的熱泵干燥機(jī)組,不但能夠完全實(shí)現(xiàn)傳統(tǒng)電輔助熱泵千系統(tǒng)的升溫效果,而且節(jié)能高效,且在干燥初期,熱泵干燥機(jī)組利用輔助蒸發(fā)器泵熱升溫可以明顯提高物品的除濕速度。
9、采用輔助冷凝器:采用輔助冷凝器[9]主要是將冷凝器分為兩部分,其中一個(gè)作為輔助冷凝器向外界環(huán)境放熱。這種結(jié)構(gòu)的冷凝器將可以使干燥溫度控制靈活方便,通過(guò)調(diào)節(jié)輔助冷凝器的流量來(lái)維持干燥溫度穩(wěn)定。由于輔助冷凝器的換熱系數(shù)較高,只需一般性的換熱器。當(dāng)用輔助冷凝器加熱外界空氣對(duì)物料進(jìn)行預(yù)干,可回收這部分溫度較高的冷凝熱,節(jié)約能源,提高系統(tǒng)效率。
10、使用惰性氣體作為干燥工質(zhì)的熱泵干燥機(jī)[10-11,19-21]:主要是利用惰性氣體代替一般使用的空氣作為干燥介質(zhì),比如使用CO2、N2 等。
11、使用穿流式熱泵氣調(diào)干燥機(jī)[12]:該設(shè)備主要是改變干燥過(guò)程中傳統(tǒng)的靠不斷吸入新鮮空氣來(lái)排出高溫廢氣的形式,以定量的氣體為載熱體和載濕體,在系統(tǒng)內(nèi)完成傳熱、傳質(zhì)、脫水和去濕的過(guò)程。且配置氣調(diào)機(jī)構(gòu),降低定量氣體中氧氣含量,以物理方法抑制果蔬、食用菌干制過(guò)程氧化和酶促褐變。
12、太陽(yáng)能- 熱泵干燥系統(tǒng)[13]:干燥系統(tǒng)的供熱與濕空氣的排濕由太陽(yáng)能加熱系統(tǒng)和熱泵除濕機(jī)二者配合起來(lái)完成。二者既可單獨(dú)使用,也可聯(lián)合使用。如果天氣晴好,氣溫高,則可單獨(dú)使用太陽(yáng)能加熱系統(tǒng);天氣不好或夜間,即可由干燥機(jī)來(lái)承擔(dān)干燥的供熱與除濕任務(wù)。
13、貧氧熱泵干燥機(jī)[14]:它由熱泵源與干燥室組成,其特征是熱泵源一端通過(guò)管道與干燥室相連,另一端通過(guò)管道與循環(huán)風(fēng)機(jī)的一端相連,循環(huán)風(fēng)機(jī)的另一端通過(guò)管道與貧氧發(fā)生器的一端相連,貧氧發(fā)生器的另一端通過(guò)管道與干燥室相連,它是在不改變?cè)袀鹘y(tǒng)熱泵系統(tǒng)的前提下,在空氣循環(huán)回路中置入一個(gè)燃燒環(huán)節(jié),故可利用燃燒消耗空氣中的氧,使氧變成二氧化碳,并可提供熱能補(bǔ)充,故結(jié)構(gòu)簡(jiǎn)單,操作方便。
八、結(jié)論
熱泵干燥機(jī)以其節(jié)能的特性而被社會(huì)廣泛應(yīng)用。我們不斷地研究和發(fā)展熱泵干燥機(jī)就是不斷地提高其熱效率、提高其穩(wěn)定性、提高其智能化、提高其環(huán)保性能,朝著節(jié)能減排、產(chǎn)品更經(jīng)濟(jì)的方向發(fā)展。
參考文獻(xiàn):
[1] 馮英, 陳楊華, 熱泵干燥機(jī)的現(xiàn)狀與應(yīng)用展望[J]. 能源研究與管理, 2010, 27(2):53- 55.
[2] 戰(zhàn)劍鋒, 李鵬, 陶毓博. 木材太陽(yáng)能干燥技術(shù)的實(shí)踐與應(yīng)用[J]. 林業(yè)機(jī)械與木工設(shè)備, 2004,32 (8):32.
[3] 高廣春, 王劍鋒, 馮仰浦. 熱泵干燥機(jī)組性能研究進(jìn)展[J]. 食品科學(xué), 1999, 20(5):59- 62.
[4] 李陽(yáng)春, 王劍鋒, 陳光明等. 熱泵干燥機(jī)系統(tǒng)幾種循環(huán)的對(duì)比分析與研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2003, 34(6):84- 86.
[5] 高廣春, 王劍鋒. 相變貯熱在熱泵干燥機(jī)組中的應(yīng)用研究[J]. 太陽(yáng)能學(xué)報(bào), 2001, 22(3):262- 265.
[6] 陳軍, 史琳, 張金龍等. 高溫除濕干燥機(jī)的實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào), 2006, 27(3):376- 378.
[7] 楊先亮, 宋蕾娜, 光亞. 熱泵干燥系統(tǒng)的熱力學(xué)分析[J].農(nóng)機(jī)化研究,2009,31(4) : 200- 203.
[8] 張秀君, 高廣春. 食品熱泵干燥機(jī)組干燥初期泵熱升溫的實(shí)驗(yàn)研究[J]. 食品工業(yè)科技, 2005, 26(10):142- 145.
[9] 馬一太, 張嘉輝, 呂燦仁. 熱泵干燥系統(tǒng)運(yùn)行特性的有效能研究[J]. 熱科學(xué)與技術(shù), 2003, 2(2):95- 100.
[10]Petter Neksa. CO2 heat pump systems[J]. International Journal of Refrigeration,2002,35(25):421- 427.
[11] M.N.A. Hawlader, Conrad O.Perera, Min Tian.Properties of Modified Atmosphere Heat Pump Dried Foods [J] .Journal of Food Engineering,2006, 10(74): 92- 401.
[12] 陸蒸. 穿流式熱泵氣調(diào)干燥機(jī)[J]. 機(jī)電技術(shù).2005, 28(1):61- 62.
[13] 李海雁, 劉祖明, 太陽(yáng)能- 熱泵木材干燥系統(tǒng)[J]. 太陽(yáng)能學(xué)報(bào), 2000, 21(1):17.
[14] 侯夢(mèng)斌. 貧氧熱泵干燥機(jī)[P]. 中國(guó)專(zhuān)利:CN200520076420.4, 2007- 01- 17.
[15] 張璧光,常建民,高建民,伊松林.新型多功能熱泵干燥機(jī)的研制[J].1999,28(8):118-120
[16] 金蘇敏. 用于熱泵干燥機(jī)的空氣回?zé)崞?專(zhuān)利,專(zhuān)利號(hào): ZL 95 2 39772.2
[17] 金蘇敏, 沈紹業(yè). 空氣回?zé)岬臒岜媚静母稍?能源研究與利用, 1995, 42 (6): 3~5
[18] 金蘇敏. 尹俠, 董金善. 回?zé)嵝蜔岜媚静母稍餀C(jī)的分析和研究[J]. 林業(yè)機(jī)械與木工設(shè)備, 1997, 25(7):4-6.
[19] M.I. Fadhel,K. Sopian,W.R.W. Daud,M.A. Alghoul. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce[J].Renewable and Sustaniable Energy Reviews,2010,15:1152- 1168.
[20] Conrad O.Perera,M.Shafiur Rahman.Heat pump dehumidifier drying of food [J].Trends in Food Science & Technology ,1997,11(8):75-79.
[21] Kosuke Nagaya,Ying Li,Zhehong Jin,Masahiro Fukumuro,Yoshinori Ando,Atsutoshi Akaishi.Low-temperature desiccant-based food drying system airflow and temperature control[J] .Journal of Food Engineering,2006,75(1):71- 77.
[22] 金蘇敏, 沈紹業(yè). 熱泵木材干燥機(jī)的發(fā)展與應(yīng)用[J]. 林業(yè)機(jī)械與木工設(shè)備, 1996, 24(6):22- 24.
[22] 鄭愛(ài)平. 空氣調(diào)節(jié)工程, 第二版[M]. 北京:科學(xué)出版社, 2008
[24] 陳坤杰, 李娟玲等. 熱泵干燥技術(shù)的應(yīng)用現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械報(bào),2000,31(3):109- 111.
[25] 潘永康. 現(xiàn)代干燥技術(shù)[M]. 北京: 化學(xué)工業(yè)出版社, 1998.
[26] 余克明, 王崎. 熱泵干燥技術(shù)的發(fā)展及其應(yīng)用的前景[J]. 能源技術(shù), 2000,25(1) : 36- 37.
[27] 冷紅云, 趙亮. 淺談熱泵技術(shù)在干燥領(lǐng)域中的應(yīng)用[A]. 科技信息[C]. 中國(guó)學(xué)術(shù)期刊電子出版社, 2011,28(12):99.
[28] 戴晉同, 陳立和, 劉曦, 張華谷. 熱泵自然干燥[J]. 化學(xué)工程與裝備, 2011,40(7):157- 160.
[29] 曾憲陽(yáng), 馬一太, 李敏霞. 二氧化碳熱泵干燥技術(shù)[J]. 中國(guó)農(nóng)機(jī)化, 2005, 49(3): 44-48
[30] 楊先亮. 熱泵干燥系統(tǒng)的理論分析與實(shí)驗(yàn)研究[D]. 北京:華北電力大學(xué)(河北), 2007. 1-8
畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告
2.本課題要研究或解決的問(wèn)題和擬采用的研究手段(途徑):
課題內(nèi)容
本畢業(yè)設(shè)計(jì)課題結(jié)合產(chǎn)品開(kāi)發(fā),要求有一定的工程能力,選題合理,工作量飽滿(mǎn),機(jī)械制圖要求比較高。
通過(guò)本課題的設(shè)計(jì)可以綜合大學(xué)4年所學(xué)知識(shí)的運(yùn)用能力,特別是工程熱力學(xué)、傳熱學(xué)、流體力學(xué)、制冷、熱泵技術(shù)及相關(guān)專(zhuān)業(yè)課程的知識(shí)應(yīng)用,同時(shí)有要有一定創(chuàng)新能力。本畢業(yè)設(shè)計(jì)資料比較欠缺,所設(shè)計(jì)要求學(xué)生進(jìn)行設(shè)計(jì)計(jì)算、總裝圖和零部件圖紙的設(shè)計(jì),通過(guò)本畢業(yè)課題的設(shè)計(jì)有利于學(xué)生工作盡快適應(yīng)工作崗位的要求設(shè)計(jì)。
原始參數(shù)
冷凝溫度:60℃
干燥溫度5℃
進(jìn)氣溫度55℃
相對(duì)濕度:70%
壓縮機(jī)功率:2HP
制冷劑:R22
主要設(shè)計(jì)內(nèi)容
熱泵干燥機(jī)的設(shè)計(jì)主要是單級(jí)壓縮熱泵循環(huán)中蒸發(fā)器和冷凝器的設(shè)計(jì):
1、查閱資料,要求查閱相關(guān)資料,中文文獻(xiàn)25篇以上,英文文獻(xiàn)5篇以上,了解冷除濕機(jī)工作原理,寫(xiě)文獻(xiàn)綜述,并作開(kāi)題報(bào)告;
2、環(huán)境工況及需求分析;
根據(jù)蒸發(fā)溫度、冷凝溫度和R22的壓焓圖可以求出制冷劑各點(diǎn)的狀態(tài)參數(shù),然后求出單位制冷量,單位理論功等一系列值
3、熱泵循環(huán)熱力計(jì)算:
根據(jù)壓縮機(jī)功率我們可以算出冷量循環(huán),包括壓縮機(jī)選型,冷、熱負(fù)荷計(jì)算,風(fēng)量分配等,然后根據(jù)給定條件可以查出空氣循環(huán)中各點(diǎn)空氣狀態(tài)并進(jìn)行除濕量的計(jì)算;
4、蒸發(fā)器、冷凝器的設(shè)計(jì)計(jì)算;
主要是對(duì)蒸發(fā)器和冷凝器進(jìn)行換熱面積的計(jì)算,先確定它們的結(jié)構(gòu),控制迎面速度,然后根據(jù)自己的情況進(jìn)行管道和翅片的設(shè)計(jì)并進(jìn)行校核。
5、圖紙?jiān)O(shè)計(jì),重點(diǎn)在總圖和各換熱器的設(shè)計(jì)圖紙上。
設(shè)計(jì)部分:2HP熱泵干燥機(jī)的設(shè)計(jì)
內(nèi)容:1、零部件圖紙(折1#圖紙6張以上)
2、完成干燥機(jī)的設(shè)計(jì)說(shuō)明書(shū);
3、完成干燥機(jī)的設(shè)計(jì);
系統(tǒng)流程圖如下:
1-壓縮機(jī)
2-冷凝器
3-過(guò)濾器
4-毛細(xì)管
5-蒸發(fā)器
6-風(fēng)機(jī)
畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告
指導(dǎo)教師意見(jiàn):
1.對(duì)“文獻(xiàn)綜述”的評(píng)語(yǔ):
2.對(duì)本課題的深度、廣度及工作量的意見(jiàn)和對(duì)設(shè)計(jì)(論文)結(jié)果的預(yù)測(cè):
指導(dǎo)教師:
年 月 日
所在專(zhuān)業(yè)審查意見(jiàn):
負(fù)責(zé)人:
年 月 日
10