壓縮包內含有CAD圖紙和說明書,咨詢Q 197216396 或 11970985
寧
課程設計說明書
CM6132型精密普通車床主軸變速箱設計
所在學院
專 業(yè)
班 級
姓 名
學 號
指導老師
年 月 日
摘要
本次設計主要由機床的級數入手,于結構式、結構網擬定,再到齒輪和軸的設計,再選擇各種主傳動配合件,對軸和齒輪及配合件進行校核,將主傳動方案“結構化”,設計主軸變速箱裝配圖及零件圖,側重進行傳動軸組件、主軸組件、變速機構、箱體、潤滑與密封、傳動軸及滑移齒輪零件的設計,完成設計任務。
本次突出了結構設計的要求,在保證機床的基本要求下,根據機床設計的原則,擬定機構式和結構網,對機床的機構進行精簡,力求降低生產成本;主軸和齒輪設計在滿足強度需要的同時,材料的選擇也是采用折中的原則,沒有選擇過高強度的材料從而造成浪費。
【關鍵詞】車床、主傳動系統(tǒng)、結構式、電動機。
目錄
摘要 2
1 緒論 5
1.1 課程設計的目的 5
1.2課程設計的內容 5
1.2.1 理論分析與設計計算 5
1.2.2 圖樣技術設計 5
1.2.3編制技術文件 5
1.3.2技術要求 5
2. 主動參數的擬定 6
2.1確定傳動公比 6
2.2主電動機的選擇 6
3.普通車床的規(guī)格 7
4.轉速圖的擬定 8
4.1確定變速組及各變速組中變速副的數目 8
4.2結構式基本組和擴大組的擬定 8
4.3 確定各變速組此論傳動副齒數 10
4.4確定各變速組變速副齒數 11
4.5繪制主傳動系統(tǒng)圖 13
5.傳動件的設計 14
5.1 帶傳動設計 14
5.1.1計算設計功率Pd 14
5.1.2選擇帶型 14
5.1.3確定帶輪的基準直徑并驗證帶速 15
5.1.4確定中心距離、帶的基準長度并驗算小輪包角 16
5.1.5確定帶的根數z 16
5.1.6確定帶輪的結構和尺寸 17
5.1.7確定帶的張緊裝置 17
5.1.8計算壓軸力 17
5.2確定各軸轉速 18
5.3傳動軸直徑的估算:確定各軸最小直徑 19
5.4鍵的選擇、傳動軸、鍵的校核 20
6.各變速組齒輪模數的確定和校核 22
6.齒輪校驗 25
7.主軸組件設計 29
7.1主軸的基本尺寸確定 29
7.1.1外徑尺寸D 29
7.1.2主軸孔徑d 29
7.1.3主軸懸伸量a 31
7.1.4支撐跨距L 31
7.1.5主軸最佳跨距的確定 31
7.2主軸剛度驗算 33
7.3各軸軸承的選用的型號 35
小 結 36
參考文獻 37
1 緒論
1.1 課程設計的目的
通過課程設計,分析比較機械系統(tǒng)中的某些典型機構,進行選擇和改進;結合結構設計,進行設計計算并編寫技術文件;完成系統(tǒng)主傳動設計,達到學習設計步驟和方法的目的。通過設計,掌握查閱相關工程設計手冊、設計標準和資料的方法,達到積累設計知識和設計技巧,提高學生設計能力的目的。通過設計,使學生獲得機械系統(tǒng)基本設計技能的訓練,提高分析和解決工程技術問題的能力,并為進行機械系統(tǒng)設計創(chuàng)造一定的條件。
1.2課程設計的內容
《機械系統(tǒng)設計》課程設計內容由理論分析與設計計算、圖樣技術設計和技術文件編制三部分組成。
1.2.1 理論分析與設計計算
(1)機械系統(tǒng)的方案設計。設計方案的分析,最佳功能原理方案的確定。
(2)根據總體設計參數,進行傳動系統(tǒng)運動設計和計算。
(3)根據設計方案和零部件選擇情況,進行有關動力計算和校核。
1.2.2 圖樣技術設計
(1)選擇系統(tǒng)中的主要機件。
(2)工程技術圖樣的設計與繪制。
1.2.3編制技術文件
(1)對于課程設計內容進行自我經濟技術評價。
(2)編制設計計算說明書。
1.3.2技術要求
(1)利用電動機完成換向和制動。
(2)各滑移齒輪塊采用單獨操縱機構。
(3)進給傳動系統(tǒng)采用單獨電動機驅動。
2. 主動參數的擬定
2.1確定傳動公比
參考同類型的機床初步擬定參數如下:
根據《機械制造裝備設計》公式(3-2)因為已知
工件最大回轉直徑
(mm)
最高轉速
( )
最低轉速
( )
公比
320
1250
28
1.41
∴ Z=+1 =
根據《機械制造裝備設計》和《金屬切削機床手冊》標準公比,對于通用機床,為了轉速損失不大,機床結構不過于復雜,這里我們取標準公比系列=1.41。
因為=1.26=1.06 ,根據《機械制造裝備設計》表3-6標準數列。查[1]表2.12,首先找到28r/min、然后每隔5個數取一個值(1.41=1.066),得出主軸的轉速數列為28,40,56,80,112,160,224,315,450,630,900,1250共12級。
2.2主電動機的選擇
合理的確定電機功率P,使機床既能充分發(fā)揮其使用性能,滿足生產需要,又不致使電機經常輕載而降低功率因素。
現在以常見的中碳鋼為工件材料,取45號鋼,正火處理,車削外圓,表面粗糙度=3.2mm。采用車刀具,可轉位外圓車刀,刀桿尺寸:16mm25mm。刀具幾何參數:=15,=6,=75,=15,=0,=-10,b=0.3mm,r=1mm。
現以確定粗車是的切削用量為設計:
確定背吃刀量和進給量f, 取3mm,f取0.2。
確定切削速度,取V=1.7。
機床功率的計算,
主切削力的計算 :主切削力的計算公式及有關參數:
F=9.81
=9.8127030.920.95
=1038(N)
切削功率的計算
==10381.7=1.8(kW)
依照一般情況,取機床變速效率=0.8.
==2.3(kW)
根據Y系列三相異步電動機的技術數據,Y系列三相異步電動機為一般用途全封閉自扇冷式籠型異步電動機,具有防塵埃、鐵屑或其他雜物侵入電動機內部的特點,B級絕緣,工業(yè)環(huán)境溫度不超過+40℃,相對濕度不超過95%,海拔高度不超過1000m,額定電壓380V,頻率50Hz。適用于無特殊要求的機械上,如機床,泵,風機,攪拌機,運輸機,農業(yè)機械等。
根據以上計算,為滿足轉速和功率要求,選擇Y系列三相異步電動機型號為:Y100L2-4,其技術參數見下表3-1.
表3-1 ?Y100L2-4型電動機技術數據
電動機型號
額定功率/KW
滿載轉速/rmp
額定轉矩/N.m
最大轉矩/N.m
Y100L2-4
3
1440
2.2
2.3
至此,可得到下表3-2中的車床參數。
3.普通車床的規(guī)格
根據以上的計算和設計任務書可得到本次設計車床的基本參數:
表3-2 車床的主參數(規(guī)格尺寸)和基本參數表
工件最大回轉直徑
(mm)
最高轉速
( )
最低轉速
( )
電機功率
P(kW)
公比
轉速級數Z
320
1250
28
3
1.41
12
4.轉速圖的擬定
擬定變速方案,包括變速型式的選擇以及開停、換向、制動、操縱等整個變速系統(tǒng)的確定。變速型式則指變速和變速的元件、機構以及組成、安排不同特點的變速型式、變速類型。
變速方案和型式與結構的復雜程度密切相關,和工作性能也有關系。因此,確定變速方案和型式,要從結構、工藝、性能及經濟等多方面統(tǒng)一考慮。
變速方案有多種,變速型式更是眾多,比如:變速型式上有集中變速,分離變速;擴大變速范圍可用增加變速組數,也可采用背輪結構、分支變速等型式;變速箱上既可用多速電機,也可用交換齒輪、滑移齒輪、公用齒輪等。
顯然,可能的方案有很多,優(yōu)化的方案也因條件而異。
4.1確定變速組及各變速組中變速副的數目
機床主參數:機床的主軸轉速范圍為28~1250轉/分,轉速級數Z=12,公比=1.41,電動機的轉速=1440轉/分。
級數為Z的變速系統(tǒng)由若干個順序的變速組組成,各變速組分別有、……個變速副。即
由Z=12??傻茫?
主變速傳動系從電動機到主軸,通常為降速傳動,接近電動機的傳動轉速較高, 傳動的轉矩較小,尺寸小一些,反之,靠近主軸的傳動件轉速較低,傳遞的轉矩較大,尺寸就較大。因此在擬定主變速傳動系時,應盡可能將傳動副較多的變速組安排在前面,傳動副數少的變速組放在后面,使主變速傳動系中更多的傳動件在高速范圍內工作,尺寸小一些,以節(jié)省變速箱的造價,減小變速箱的外形尺寸;也就是滿足傳動副前多后少的原則,因此確定傳動方案為:12=3×2×2;
由12=3×2×2傳動式可得6種結構式和對應的結構網。分別為:
依據傳動順序與擴大順序相一致的原則選擇方案為 :;
4.2結構式基本組和擴大組的擬定
(1)繪制常規(guī)的轉速圖時,要注意,為了結構緊湊,減小振動和噪聲,通常限制:
a:最小傳動比Imin>=1/4;
b:最小傳動比Imax<=2(斜齒輪<=2.5);所以,在一個變速組中,變速范圍要小于等于8,對應本次設計,轉速圖中,一個軸上的傳動副間最大不能相差6格。
c:前緩后急原則;即傳動在前的傳動組,其降速比小,而在后的傳動組,其降速比大。
CM6132型精密車床采用分離式傳動,即變速箱和主軸箱分離。III,IV軸為皮帶傳動。在主軸箱的傳動中采用了背輪機構,解決了傳動比不能過大(受極限傳動比限制)的問題。
(3)繪制轉速圖
a.選擇Y100L1-4型Y系列籠式三相異步電動機。
d.繪制轉速圖
在五根軸中,按變速順序依次設為Ⅰ、Ⅱ、Ⅲ、Ⅳ(背輪機構)、Ⅴ(主軸)。Ⅰ與Ⅱ、Ⅱ與Ⅲ、Ⅲ與Ⅳ、Ⅳ和Ⅴ軸之間的變速組分別設為a、b、c、d. Ⅴ(主軸)開始,確定Ⅰ、Ⅱ、Ⅲ、Ⅳ的轉速:
①先來確定背輪機構的公比
變速組d 的變速范圍為=8,構式,
采用背輪機構,則其公比為:=1
==
=
②確定軸Ⅲ的公比
變速組c采用皮帶傳動降速,可取
③確定軸Ⅱ的公比
為了擴大變速范圍,變速組b是基本組,并采用混合公比,使用二聯滑移齒輪,可取
==
=
④確定軸Ⅰ的轉速
對于變速組a,是第一擴大組,其級比指數為3,可取
=
==
由此也可確定加在電動機與主軸之間的定變速比。下面畫出轉速圖(電動機轉速與主軸最高轉速相近)。CM6132型精密車床(12級轉速)采用了背輪機構后的轉速圖
4.3 確定各變速組此論傳動副齒數
(1)Sz100-120,中型機床Sz=70-100
(2)直齒圓柱齒輪Zmin18-20
圖2-3 轉速圖
(7)齒輪齒數的確定。據設計要求Zmin≥18—20,由表4.1,根據各變速組公比,可得各傳動比和齒輪齒數,各齒輪齒數如表2-2。
表2-2 齒輪齒數
變速箱部分
傳動比
基本組
第1擴大組
1:1
1:1.41
1:2
1.26:1
1:2
代號
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
齒數
36
36
30
42
24
48
53
37
30
60
主軸箱部分
傳動比
1:1.28
1:2.8
代號
Z6
Z6’
Z7
Z7’
齒數
20
56
20
56
4.4確定各變速組變速副齒數
確定齒輪齒數的原則和要求:
①齒輪的齒數和不應過大;齒輪的齒數和過大會加大兩軸之間的中心距,使機床結構龐大,一般推薦≤100~200.
②最小齒輪的齒數要盡可能少;但同時要考慮:
※最小齒輪不產生根切,機床變速箱中標準直圓柱齒輪,一般最小齒數≥18;
※受結構限制的最小齒輪最小齒數應大于18~20;
※齒輪齒數應符合轉速圖上傳動比的要求:實際傳動比(齒數之比)與理論傳動比(轉速圖上要求的傳動比)之間又誤差,但不能過大,確定齒輪數所造成的轉速誤差,一般不應超過10%(-1)%,即%
-要求的主軸轉速;
-齒輪傳動實現的主軸轉速;
齒輪齒數的確定,當各變速組的傳動比確定以后,可確定齒輪齒數。對于定比傳動的齒輪齒數可依據機械設計手冊推薦的方法確定。對于變速組內齒輪的齒數,如傳動比是標準公比的整數次方時,變速組內每對齒輪的齒數和及小齒輪的齒數可以從《機械制造裝備設計》表3-9中選取。一般在主傳動中,最小齒數應大于18~20。采用三聯滑移齒輪時,應檢查滑移齒輪之間的齒數關系:三聯滑移齒輪的最大齒輪之間的齒數差應大于或等于4,以保證滑移是齒輪外圓不相碰。
根據《機械制造裝備設計》,查表3-9各種常用變速比的使用齒數。
a變速組
,
時,=…,56,59,61,63,65,66,68,70,72,74,…
時,=…57,59,60,61,62,65,67,70,72,73,75,…
可知,可取=72。再由參考文獻[1]表5-2查出各對齒輪副中小齒輪的齒數為:26、27和24。則:
;;
b變速組
,
時,=…,80,84,85,95,96,99,100,104,105,…
時,=…,92,93,95,96,98,99,101,102,104,…
可取=90,查出齒輪齒數為:37和30。則:
;
4.5繪制主傳動系統(tǒng)圖
5.傳動件的設計
5.1 帶傳動設計
輸出功率P=3kW,轉速n1=1420r/min,n2=900r/min
5.1.1計算設計功率Pd
表4 工作情況系數
工作機
原動機
ⅰ類
ⅱ類
一天工作時間/h
10~16
10~16
載荷
平穩(wěn)
液體攪拌機;離心式水泵;通風機和鼓風機();離心式壓縮機;輕型運輸機
1.0
1.1
1.2
1.1
1.2
1.3
載荷
變動小
帶式運輸機(運送砂石、谷物),通風機();發(fā)電機;旋轉式水泵;金屬切削機床;剪床;壓力機;印刷機;振動篩
1.1
1.2
1.3
1.2
1.3
1.4
載荷
變動較大
螺旋式運輸機;斗式上料機;往復式水泵和壓縮機;鍛錘;磨粉機;鋸木機和木工機械;紡織機械
1.2
1.3
1.4
1.4
1.5
1.6
載荷
變動很大
破碎機(旋轉式、顎式等);球磨機;棒磨機;起重機;挖掘機;橡膠輥壓機
1.3
1.4
1.5
1.5
1.6
1.8
根據V帶的載荷平穩(wěn),兩班工作制(16小時),查《機械設計》P296表4,
取KA=1.1。即
5.1.2選擇帶型
普通V帶的帶型根據傳動的設計功率Pd和小帶輪的轉速n1按《機械設計》P297圖13-11選取。
根據算出的Pd=3.3kW及小帶輪轉速n1=1420r/min ,查圖得:dd=80~100可知應選取A型V帶。
5.1.3確定帶輪的基準直徑并驗證帶速
由《機械設計》P298表13-7查得,小帶輪基準直徑為80~100mm
則取dd1=95mm> ddmin.=75 mm(dd1根據P295表13-4查得)
表3 V帶帶輪最小基準直徑
槽型
Y
Z
A
B
C
D
E
20
50
75
125
200
355
500
由《機械設計》P295表13-4查“V帶輪的基準直徑”,得=160mm
① 誤差驗算傳動比: (為彈性滑動率)
誤差 符合要求
② 帶速
滿足5m/s
300mm,所以宜選用E型輪輻式帶輪。
總之,小帶輪選H型孔板式結構,大帶輪選擇E型輪輻式結構。
帶輪的材料:選用灰鑄鐵,HT200。
5.1.7確定帶的張緊裝置
選用結構簡單,調整方便的定期調整中心距的張緊裝置。
5.1.8計算壓軸力
由《機械設計》P303表13-12查得,A型帶的初拉力F0=123.75N,上面已得到=171.2o,z=3,則
對帶輪的主要要求是質量小且分布均勻、工藝性好、與帶接觸的工作表面加工精度要高,以減少帶的磨損。轉速高時要進行動平衡,對于鑄造和焊接帶輪的內應力要小, 帶輪由輪緣、腹板(輪輻)和輪轂三部分組成。帶輪的外圈環(huán)形部分稱為輪緣,輪緣是帶輪的工作部分,用以安裝傳動帶,制有梯形輪槽。由于普通V帶兩側面間的夾角是40°,為了適應V帶在帶輪上彎曲時截面變形而使楔角減小,故規(guī)定普通V帶輪槽角 為32°、34°、36°、38°(按帶的型號及帶輪直徑確定),輪槽尺寸見表7-3。裝在軸上的筒形部分稱為輪轂,是帶輪與軸的聯接部分。中間部分稱為輪幅(腹板),用來聯接輪緣與輪轂成一整體。
表 普通V帶輪的輪槽尺寸(摘自GB/T13575.1-92)
項目
?
符號
槽型
Y
Z
A
B
C
D
E
基準寬度
b p
5.3
8.5
11.0
14.0
19.0
27.0
32.0
基準線上槽深
h amin
1.6
2.0
2.75
3.5
4.8
8.1
9.6
基準線下槽深
h fmin
4.7
7.0
8.7
10.8
14.3
19.9
23.4
槽間距
e
8 ± 0.3
12 ± 0.3
15 ± 0.3
19 ± 0.4
25.5 ± 0.5
37 ± 0.6
44.5 ± 0.7
第一槽對稱面至端面的距離
f min
6
7
9
11.5
16
23
28
最小輪緣厚
5
5.5
6
7.5
10
12
15
帶輪寬
B
B =( z -1) e + 2 f ? z —輪槽數
外徑
d a
輪 槽 角
32°
對應的基準直徑 d d
≤ 60
-
-
-
-
-
-
34°
-
≤ 80
≤ 118
≤ 190
≤ 315
-
-
36°
60
-
-
-
-
≤ 475
≤ 600
38°
-
> 80
> 118
> 190
> 315
> 475
> 600
極限偏差
± 1
± 0.5
V帶輪按腹板(輪輻)結構的不同分為以下幾種型式:
(1) 實心帶輪:用于尺寸較小的帶輪(dd≤(2.5~3)d時),如圖7 -6a。
(2) 腹板帶輪:用于中小尺寸的帶輪(dd≤ 300mm 時),如圖7-6b。
(3) 孔板帶輪:用于尺寸較大的帶輪((dd-d)> 100 mm 時),如圖7 -6c 。
(4) 橢圓輪輻帶輪:用于尺寸大的帶輪(dd> 500mm 時),如圖7-6d。
(a) (b) (c) (d)
圖7-6 帶輪結構類型
根據設計結果,可以得出結論:小帶輪選擇實心帶輪,如圖(a),大帶輪選擇腹板帶輪如圖(b)
5.2確定各軸轉速
⑴確定主軸計算轉速:
主軸的計算轉速nj,由公式n=n得,主軸的計算轉速nj=78.4r/min,
取80r/min。
⑵各變速軸的計算轉速:
如前所示主軸計算轉速至最高轉速間的所有轉速都傳遞全部功率,因此,實現上述主軸轉速的傳動件的實際工作轉速也傳遞全功率其他傳動件的計算轉速就是其傳遞全部功率是的最低轉速。
所以各軸計算轉速如下:
軸序號
Ⅰ
Ⅱ
Ⅲ
Ⅳ
Ⅴ
計算轉速
900
450
224
224
80
⑶各齒輪的計算轉速
各變速組內一般只計算組內最小齒輪,也是最薄弱的齒輪,故也只需確定最小齒輪的計算轉速。
5.3傳動軸直徑的估算:確定各軸最小直徑
根據《機械設計手冊》表7-13,,并查《金屬切削機床設計》表7-13得到取1.
①Ⅱ軸的直徑:取
取整為36mm.
②Ⅲ軸的直徑:取
取整為40mm
③Ⅳ軸的直徑:取
取整為55mm
④Ⅴ軸的直徑:取
取整為70mm
其中:P-電動機額定功率(kW);
-從電機到該傳動軸之間傳動件的傳動效率的乘積;
-該傳動軸的計算轉速();
-傳動軸允許的扭轉角()。
當軸上有鍵槽時,d值應相應增大4~5%;當軸為花鍵軸時,可將估算的d值減小7%為花鍵軸的小徑;空心軸時,d需乘以計算系數b,b值見《機械設計手冊》表7-12。Ⅰ和Ⅳ為由鍵槽并且軸Ⅳ為空心軸,Ⅱ和Ⅲ為花鍵軸。根據以上原則各軸的直徑取值:,和在后文給定,軸采用光軸,軸和軸因為要安裝滑移齒輪所以都采用花鍵軸。因為矩形花鍵定心精度高,定心穩(wěn)定性好,能用磨削的方法消除熱處理變形,定心直徑尺寸公差和位置公差都能獲得較高的精度,故我采用矩形花鍵連接。按規(guī)定,矩形花鍵的定心方式為小徑定心。查《機械設計手冊》 的矩形花鍵的基本尺寸系列,軸花鍵軸的規(guī)格;軸花鍵軸的規(guī)格。
5.4鍵的選擇、傳動軸、鍵的校核
查《機械設計手冊》表6-1選擇軸上的鍵,根據軸的直徑,鍵的尺寸選擇,鍵的長度L取22。主軸處鍵的選擇同上,鍵的尺寸為,鍵的長度L取100。
7.傳動軸的校核
需要驗算傳動軸薄弱環(huán)節(jié)處的傾角荷撓度。驗算傾角時,若支撐類型相同則只需驗算支反力最大支撐處傾角;當此傾角小于安裝齒輪處規(guī)定的許用值時,則齒輪處傾角不必驗算。驗算撓度時,要求驗算受力最大的齒輪處,但通常可驗算傳動軸中點處撓度(誤差<%3)。
當軸的各段直徑相差不大,計算精度要求不高時,可看做等直徑,采用平均直徑進行計算,計算花鍵軸傳動軸一般只驗算彎曲剛度,花鍵軸還應進行鍵側擠壓驗算。彎曲剛度驗算;的剛度時可采用平均直徑或當量直徑。一般將軸化為集中載荷下的簡支梁,其撓度和傾角計算公式見《金屬切削機床設計》表7-15.分別求出各載荷作用下所產生的撓度和傾角,然后疊加,注意方向符號,在同一平面上進行代數疊加,不在同一平面上進行向量疊加。
①Ⅰ軸的校核:通過受力分析,在一軸的三對嚙合齒輪副中,中間的兩對齒輪對Ⅰ軸中點處的撓度影響最大,所以,選擇中間齒輪嚙合來進行校核
最大撓度:
查《機械制造裝備設計》表3-12許用撓度 ;
。
②Ⅱ軸、Ⅲ軸的校核同上。
鍵和軸的材料都是鋼,由《機械設計》表6-2查的許用擠壓應力,取其中間值,。鍵的工作長度,鍵與輪榖鍵槽的接觸高度。由《機械設計》式(6-1)可得
可見連接的擠壓強度足夠了,鍵的標記為:
6.各變速組齒輪模數的確定和校核
齒輪模數的估算。通常同一變速組內的齒輪取相同的模數,如齒輪材料相同時,選擇負荷最重的小齒輪,根據齒面接觸疲勞強度和齒輪彎曲疲勞強度條件按《金屬切削機床設計》表7-17進行估算模數和,并按其中較大者選取相近的標準模數,為簡化工藝變速傳動系統(tǒng)內各變速組的齒輪模數最好一樣,通常不超過2~3種模數。
先計算最小齒數齒輪的模數,齒輪選用直齒圓柱齒輪及斜齒輪傳動,查《機械設計》表10-8齒輪精度選用7級精度,再由《機械設計》表10-1選擇小齒輪材料為40C(調質),硬度為280HBS:
根據《金屬切削機床設計》表7-17;有公式:
①齒面接觸疲勞強度:
②齒輪彎曲疲勞強度:
⑴、a變速組:分別計算各齒輪模數,先計算最小齒數齒輪。
①齒面接觸疲勞強度:
其中: -公比 ; = 2;
P-齒輪傳遞的名義功率
-齒寬系數=;由《機械設計基礎》可得。
-齒輪許允接觸應力,由《金屬切削機床設計》圖7-6按MQ線查取;
-計算齒輪計算轉速;
K-載荷系數取1.2。
=650MPa,
所以根據《畫法幾何及機械制圖》表10-4將齒輪模數圓整為2.2 。
②齒輪彎曲疲勞強度:
其中: P-齒輪傳遞的名義功率;P = 0.963=2.88KW;
-齒寬系數=;
-齒輪許允齒根應力,由《金屬切削機床設計》圖7-11按MQ線查??;
-計算齒輪計算轉速;
K-載荷系數取1.2;
,
∴
∴
根據《畫法幾何及機械制圖》表10-4將齒輪模數圓整為2.5mm 。
∵所以≥≥2.32
于是變速組a的齒輪模數取m = 2.5,b =20mm。
⑵、b變速組:確定軸Ⅲ上另兩聯齒輪的模數,先計算最小齒數22的齒輪。
① 齒面接觸疲勞強度:(公式見a變速組)
其中: -公比 ; =2.82;
P-齒輪傳遞的名義功率;P = 0.9223=2.766KW;
-齒寬系數=;
-齒輪許允接觸應力,由《金屬切削機床設計》圖7-6按MQ線查取;
-計算齒輪計算轉速;
K-載荷系數取1.2。
=650MPa,
∴
∴
根據《畫法幾何及機械制圖》表10-4將齒輪模數圓整為2.5。
② 齒輪彎曲疲勞強度:
其中: P-齒輪傳遞的名義功率;P =0.9223=2.766KW;
-齒寬系數=;
-齒輪許允齒根應力,由《金屬切削機床設計》圖7-11按MQ線查?。?
-計算齒輪計算轉速;
K-載荷系數取1.2。
,
∴
∴
根據《畫法幾何及機械制圖》表10-4將齒輪模數圓整為3mm 。
∵所以
軸Ⅲ上主動輪齒輪的直徑:
⑷、標準齒輪參數:
1)從《機械原理》表5-1查得以下公式
齒頂圓直徑 ;
齒根圓直徑;
分度圓直徑 ;
齒頂高 ;
齒根高 ;
2)圓柱齒輪
齒頂圓直徑
齒根圓直徑;
分度圓直徑 ;
齒頂高 ;
齒根高 ;
表5.1齒輪尺寸表 (單位:mm)
齒輪
齒數
z
模數
分度圓直徑d
齒頂圓直徑
齒根圓直徑
齒頂高
⒈
36
2.5
90
95
83.75
2.5
⒉
36
2.5
90
95
83.75
2.5
⒊
30
2.5
75
80
68.75
2.5
⒋
42
2.5
105
110
98.75
2.5
⒌
24
2.5
60
65
53.75
2.5
⒍
48
2.5
120
125
126.25
2.5
⒎
53
2.5
132.5
137.5
68.75
2.5
⒏
37
2.5
92.5
97.5
86.25
2.5
⒐
30
2.5
75
80
68.75
2.5
⒑
60
2.5
150
155
143.75
2.5
6.齒輪校驗
在驗算算速箱中的齒輪應力時,選相同模數中承受載荷最大,齒數最小的齒輪進接觸應力和彎曲應力的驗算。這里要驗算的是齒輪1,齒輪5,齒輪11這三個齒輪。
計算公式:①彎曲疲勞強度;
②接觸疲勞強度
6.1.1校核a組齒輪
①彎曲疲勞強度;校核齒數為18的齒輪,確定各項參數
⑴,n=800r/min,
⑵確定動載系數
∵
齒輪精度為7級,由《機械設計》圖10-8查得動載系數。由《機械設計》使用系數。
⑶。
⑷確定齒向載荷分配系數:取齒寬系數
查《機械設計》表10-4,得非對稱齒向載荷分配系數;
h==11.25;
,
查《機械設計》圖10-13得
⑸確定齒間載荷分配系數:
由《機械設計》表10-2查的使用,
由《機械設計》表10-3查得齒間載荷分配系數
⑹確定載荷系數:
⑺ 查《機械設計》表 10-5 齒形系數及應力校正系數
;
⑻計算彎曲疲勞許用應力
由《機械設計》圖10-20(c)查得小齒輪的彎曲疲勞強度極限。
《機械設計》圖10-18查得 壽命系數,取疲勞強度安全系數S = 1.3
,
②接觸疲勞強度
⑴載荷系數K的確定:
⑵彈性影響系數的確定;查《機械設計》表10-6得
⑶查《機械設計》圖10-21(d)得,
故齒輪1合適。
6.1.2 校核b組齒輪
①彎曲疲勞強度;校核齒數為22的齒輪,確定各項參數
⑴,n=400r/min,
⑵確定動載系數:
齒輪精度為7級,由《機械設計》圖10-8查得動載系數
⑶
⑷確定齒向載荷分配系數:取齒寬系數
查《機械設計》表10-4,插值法得非對稱齒向載荷分配系數
,查《機械設計》圖10-13得
⑸確定齒間載荷分配系數:
由《機械設計》表10-2查的使用 ;
由《機械設計》表10-3查得齒間載荷分配系數
⑹確定動載系數:
⑺查《機械設計》表 10-5齒形系數及應力校正系數
、
⑻計算彎曲疲勞許用應力
由《機械設計》圖10-20(c)查得小齒輪的彎曲疲勞強度極限。
《機械設計》圖10-18查得 壽命系數,疲勞強度安全系數S = 1.3
,
②接觸疲勞強度
u=62/22=2.82;
⑴、載荷系數K的確定:
⑵、彈性影響系數的確定;查《機械設計》表10-6得
⑶、查《機械設計》圖10-21(d)得,
故齒輪7合適。
7.主軸組件設計
主軸的結構儲存應滿足使用要求和結構要求,并能保證主軸組件具有較好的工作性能。主軸結構尺寸的影響因素比較復雜,目前尚難于用計算法準確定出。通常,根據使用要求和結構要求,進行同型號筒規(guī)格機床的類比分析,先初步選定尺寸,然后通過結構設計確定下來,最后在進行必要的驗算或試驗,如不能滿足要求可重新修改尺寸,直到滿意為直。
主軸上的結構尺寸雖然很多,但起決定作用的尺寸是:外徑D、孔徑d、懸伸量a和支撐跨距L。
7.1主軸的基本尺寸確定
7.1.1外徑尺寸D
主軸的外徑尺寸,關鍵是主軸前軸頸的(前支撐處)的直徑。選定后,其他部位的外徑可隨之而定。一般是通過筒規(guī)格的機床類比分析加以確定。320mm車床,P=3KW查《機械制造裝備設計》表3-13,前軸頸應,初選,后軸頸取,
7.1.2主軸孔徑d
中型臥式車床的主軸孔徑,已由d=48mm,增大到d=60-80mm,當主軸外徑一定時,增大孔徑受到一下條件的限制,1、結構限制;對于軸徑尺寸由前向后遞減的主軸,應特別注意主軸后軸頸處的壁厚不允許過薄,對于中型機床的主軸,后軸頸的直徑與孔徑之差不要小于,主軸尾端最薄處的直徑不要小于。2、剛度限制;孔徑增大會削弱主軸的剛度,由材料力學知,主軸軸端部的剛度與截面慣性矩成正比,
即:
據上式可得出主軸孔徑對偶剛度影響的 ,有圖可見
當時,,說明空心主軸的剛度降低較小。當時,,空心主軸剛度降低了24%,因此為了避免過多削弱主軸的剛度,一般取。主軸孔徑d確定后,可根據主軸的使用及加工要求選擇錐孔的錐度。錐孔僅用于定心時,則錐孔應大些,若錐孔除用于定心,還要求自鎖,借以傳遞轉矩時,錐度應小些,我這里選用莫氏六號錐孔。初步設定主軸孔徑d=60mm,主軸孔徑與外徑比為0.6。
7.1.3主軸懸伸量a
主軸懸伸量的大小往往收結構限制,主要取決于主軸端部的結構形式及尺寸、刀具或夾具的安裝方式、前軸承的類型及配置、潤滑與密封裝置的結構尺寸等。主軸設計時,在滿足結構的前提下,應最大限度的縮短主軸懸伸量a。根據結構,定懸伸長度。
7.1.4支撐跨距L
當前,多數機床的主軸采用前后兩個支撐,結構簡單,制造、裝配方便,容易保證精度,但是,由于兩支撐主軸的最佳支距一般較短,結構設計難于實現,故采用三支撐結構。要比前后支距地影響大得多,因此,需要合理確定。為了使主軸組件獲得很高的剛度可抗震性,前中之距可按兩支撐主軸的最佳只距來選取。
由于三支撐的前后支距對主軸組件的性能影響較小,可根據結構情況適當確定。如果為了提高主軸的工作平穩(wěn)性,前后支距可適當加大,如取。采用三支撐結構時,一般不應該把三個支撐處的軸承同時預緊,否則因箱孔及有關零件的制造誤差,會造成無法裝配或影響正常運作。因此為了保證主軸組件的剛度和旋轉精度,在三支撐中,其中兩個支撐需要預緊,稱為緊支撐;另外一個支撐必須具有較大的間隙,即處于“浮動”狀態(tài),稱為松支撐,顯然,其中一個緊支撐必須是前支撐,否則前支撐即使存有微小間隙,也會使主軸組件的動態(tài)特性大為降低。試驗表明,前中支撐為緊支撐、后支撐位松支撐,要比前后支撐位緊支撐、中支撐為松支撐的結構靜態(tài)特性顯著提高。
7.1.5主軸最佳跨距的確定
⑴考慮機械效率,主軸最大輸出轉距.
床身上最大加工直徑約為最大回轉直徑的50到60%,即加工工件直徑取為160mm,則半徑為0.08.
[2]計算切削力
前后支撐力分別設為,.
⑶軸承剛度的計算
根據式《結構設計》(方鍵主編)(6-1)有:
查《結構設計》(方鍵主編)表6-11得軸承根子有效長度、球數和列數:
再帶入剛度公式:
;
⑷主軸當量直徑
;
⑸主軸慣性矩
;
⑹計算最佳跨距
設:
查《金屬切削機床設計》(3-14);
式中
∴
∴
式中:
7.2主軸剛度驗算
機床在切削加工過程中,主軸的負荷較重,而允許的變形由很小,因此決定主軸結構尺寸的主要因素是它的變形大小。對于普通機床的主軸,一般只進行剛度驗算。通常能滿足剛度要求的主軸,也能滿足強度要求。只有重載荷的機床的主軸才進行強度驗算。對于高速主軸,還要進行臨界轉速的驗算,以免發(fā)生共振。
一彎曲變形為主的機床主軸(如車床、銑床),需要進行彎曲剛度驗算,以扭轉變形為主的機床(如鉆床),需要進行扭轉剛度驗算。當前主軸組件剛度驗算方法較多,沒能統(tǒng)一,還屬近似計算,剛度的允許值也未做規(guī)定??紤]動態(tài)因素的計算方法,如根據部產生切削顫動條件來確定主軸組件剛度,計算較為復雜?,F在仍多用靜態(tài)計算法,計算簡單,也較適用。
主軸彎曲剛度的驗算;驗算內容有兩項:其一,驗算主軸前支撐處的變形轉角,是否滿足軸承正常工作的要求;其二,驗算主軸懸伸端處的變形位移y,是否滿足加工精度的要求。對于粗加工機床需要驗算、y值;對于精加工或半精加工機床值需驗算y值;對于可進行粗加工由能進行半精的機床(如臥式車床),需要驗算值,同時還需要按不同加工條件驗算y值。
支撐主軸組件的剛度驗算,可按兩支撐結構近似計算。如前后支撐為緊支撐、中間支撐位松支撐,可舍棄中間支撐不計(因軸承間隙較大,主要起阻尼作用,對剛度影響較?。蝗羟爸兄挝痪o支撐、后支撐為松支撐時,可將前中支距當做兩支撐的之距計算,中后支撐段主軸不計。
機床粗加工時,主軸的變形最大,主軸前支撐處的轉角有可能超過允許值,故應驗算此處的轉角。因主軸中(后)支撐的變形一般較小,故可不必計算。
主軸在某一平面內的受力情況如圖
在近似計算中可不計軸承變形的影響,則該平面內主軸前支撐處的轉角用下式計算;
切削力的作用點到主軸前支承支承的距離S=a+W,對于普通車床,W=0.4H,(H是車床中心高,設H=200mm)。
則:
當量切削力的計算:
主軸慣性矩
式中:
∴
∵
∴主軸前支撐轉角滿足要求。
7.3各軸軸承的選用的型號
①主軸 前支承:61817 :8511013;
后支撐61818 :9011513;
②Ⅰ軸 帶輪處軸尾和箱體處::61806 :30427;
③Ⅱ軸 前、后支承:61807 :35477;
④Ⅲ軸 前、后支承:61809 :45587;
小 結
畢業(yè)的時間一天一天的臨近,課程設計也接近了尾聲。在不斷的努力下我的課程設計終于完成了。在沒有做課程設計以前覺得課程設計只是對這幾年來所學知識的大概總結,但是真的面對課程設計時發(fā)現自己的想法基本是錯誤的。課程設計不僅是對前面所學知識的一種檢驗,而且也是對自己能力的一種提高。通過這次課程設計使我明白了自己原來知識太理論化了,面對單獨的課題的是感覺很茫然。自己要學習的東西還太多,以前老是覺得自己什么東西都會,什么東西都懂,有點眼高手低。通過這次課程設計,我才明白學習是一個長期積累的過程,在以后的工作、生活中都應該不斷的學習,努力提高自己知識和綜合素質。
總之,不管學會的還是學不會的的確覺得困難比較多,真是萬事開頭難,不知道如何入手。最后終于做完了有種如釋重負的感覺。
參考文獻
[1] 馮辛安主編.《機械制造裝備設計》 第2版 大連理工大學 北京:機械工業(yè)出版社, 2007.12
[2] 黃如林主編.《切削加工簡明實用手冊》 北京:化學工業(yè)出版社,2004.7
[3] 吳宗澤主編.《機械設計課程設計手冊》 第三版 清華大學 北京:高等教育出版社,2006.12
[4] 濮良貴主編.《機械設計》 第八版 北京:高等教育出版社,2007.8
[5] 范思沖主編.《畫法幾何及機械制圖 》東南大學 北京:機械工業(yè)出版社,2005.7
[6] 減速器實用技術手冊編輯委員會編. 《減速器實用技術手冊》 北京:機械工業(yè)出版社, 1992
[7] 戴曙主編. 《金屬切削機床 》 北京:機械工業(yè)出版社, 2005.1
[8] 機床設計手冊編寫組主編. 《機床設計手冊》 北京:機械工業(yè)出版社, 1980.8
[9]劉鴻文主編.《材料力學》(Ⅰ) 第四版 北京:高等教育出版社, 2006.11
[10] 機械設計手冊編委會主編. 《機械設計手冊》
[11] 成大先主編.《 機械設計手冊 》 第四版第二卷 北京:化學工業(yè)出版社,2003.9
[12]曹金榜等主編. 《 機床主軸變速箱設計指導 》 北京:機械工業(yè)出版社,1995
[13] 陳易新編. 《金屬切削機床課程設計指導書 》 北京:機械工業(yè)出版社,
1993
38