2019-2020年高考數(shù)學二輪復習 專題1 集合教案 文 教案 文.doc
《2019-2020年高考數(shù)學二輪復習 專題1 集合教案 文 教案 文.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學二輪復習 專題1 集合教案 文 教案 文.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學二輪復習 專題1 集合教案 文 教案 文 【重點知識回顧】 集合知識可以使我們更好地理解數(shù)學中廣泛使用的集合語言,并用集合語言表達數(shù)學問題,運用集合觀點去研究和解決數(shù)學問題。數(shù)學是理性思維的學科,高考尤其強調(diào)“全卷要貫穿思維能力的考查”簡易邏輯用于可以和各章融合命題,正是這一理性思維的體現(xiàn),學生只有在思維能力上有所提高才能讓數(shù)學學習有一個質(zhì)的飛躍。但思維的培養(yǎng)不是一朝一夕的,因此,在第二輪各模塊的復習中應盡量加強學生思維能力方面的培養(yǎng) 1.強化對集合與集合關系題目的訓練,理解集合中代表元素的真正意義,注意利用幾何直觀性研究問題,注意運用Venn圖解題方法的訓練,加強兩種集合表示方法轉(zhuǎn)換和化簡訓練; 2.確定集合的“包含關系”與求集合的“交、并、補”是學習集合的中心內(nèi)容,解決問題時應根據(jù)問題所涉及的具體的數(shù)學內(nèi)容來尋求方法。 ① 區(qū)別∈與、與、a與{a}、φ與{φ}、{(1,2)}與{1,2}; ② AB時,A有兩種情況:A=φ與A≠φ。 ③區(qū)分集合中元素的形式: 【典型例題】 1.對集合與簡易邏輯有關概念的考查 例1第二十九屆夏季奧林匹克運動會將于2008年8月8日在北京舉行,若集合A={參加北京奧運會比賽的運動員},集合B={參加北京奧運會比賽的男運動員},集合C={參加北京奧運會比賽的女運動員},則下列關系正確的是 ( ) A.AB B.BC C.A∩B=C D.B∪C=A 分析:本例主要考查子集的概念及集合的運算. 解析:易知選D. 點評:本題是典型的送分題,對于子集的概念,一定要從元素的角度進行理解.集合與集合間的關系,尋根溯源還是元素間的關系. 例2(07重慶)命題:“若,則”的逆否命題是( ) A.若,則 B.若,則 C.若,則 D.若,則 答案:D. 2.對集合性質(zhì)及運算的考查 例2.(xx年高考廣東卷理科2)已知集合A={ (x,y)|x,y為實數(shù),且x2+y2=l},B={(x,y) |x,y為實數(shù),且y=x}, 則A ∩ B的元素個數(shù)為( ) A.0 B. 1 C.2 D.3 【解析】C.方法一:由題得,元素的個數(shù)為2,所以選C. 方法二:直接畫出曲線和直線,觀察得兩支曲線有兩個交點,所以選C. 點評:對集合的子、交、并、補等運算,常借助于文氏圖來分析、理解.高中數(shù)學中一般考查數(shù)集和點集這兩類集合,數(shù)集應多結(jié)合對應的數(shù)軸來理解,點集則多結(jié)合對應的幾何圖形或平面直角坐標系來理解. 3.對與不等式有關集合問題的考查 例3.已知集合,則集合為 ( ) A. B. C. D. 分析:本題主要考查集合的運算,同時考查解不等式的知識內(nèi)容.可先對題目中所給的集合化簡,即先解集合所對應的不等式,然后再考慮集合的運算. 解析:依題意:,∴, ∴故選C. 點評:同不等式有關的集合問題是高考命題的熱點之一,也是高考常見的命題形式,且多為含參數(shù)的不等式問題,需討論參數(shù)的取值范圍,主要考查分類討論的思想,此外,解決集合運算問題還要注意數(shù)形結(jié)合思想的應用. 4.對與方程、函數(shù)有關的集合問題的考查 例4.已知全集,集合, ,則集合中元素的個數(shù)為 ( ) A.1 B.2 C.3 D.4 分析:本題集合A表示方程的解所組成的集合,集合B表示在集合A條件下函數(shù)的值域,故應先把集合A、B求出來,而后再考慮. 解析:因為集合,所以,所以故選B. 點評:在解決同方程、函數(shù)有關的集合問題時,一定要搞清題目中所給的集合是方程的根,或是函數(shù)的定義域、值域所組成的集合,也即要看清集合的代表元素,從而恰當簡化集合,正確進行集合運算. 【模擬演練】 一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的) 1.滿足,且的集合M的個數(shù)是 A.1 B.2 C.3 D.4 1.B解析:由題意得或,故選B. 2.若,,且,則的值為 A.2或 B.0或 C.0或2 D.0,2或 2.D 解析:由,得,則或且.所以,或,或. 本題作為第3題 4.已知全集U=R,集合,,則 A. B.[0,1] C. D. 4.A 解析:因為集合,,所以,.又,所以. 5.已知命題“,”是假命題,則實數(shù)的取值范圍是 A. B. C. D. 5.C解析:由條件得命題“,”是真命題.所以,解得. 6.已知條件:和條件:有意義,則是的 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 6.A 解析:由得,由得,則是的充分不必要條件,故是的充分不必要條件. 10.若,當時,恒成立,則的最大值為 A. B. C. D. 10.D解析:設,由于當時,恒成立,于是,即,滿足此不等式組的點構成圖中的陰影部分,其中,設,顯然直線過點A時,取得最大值. 11、函數(shù)是定義在上的非負可導函數(shù),且滿足,則對任意正數(shù),若,則必有 A. B. C. D. 11.B 解析:構造函數(shù),求導得,由條件知,∴,∴函數(shù)在上單調(diào)遞減,又,∴,即. 12.冪指函數(shù)在求導時,可運用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得,兩邊同時求導得,于是,運用此方法可以探求得知的單調(diào)遞增區(qū)間為( ). A. B. C. D.(3,8) 12.A 解析:由題意得,∴.又且,∴的單調(diào)遞增區(qū)間為.故選A. 二、填空題(本大題共4小題,每小題4分,共16分) 13.現(xiàn)記且為集合B關于集合A的差集,若集合A={l,2,3,4,5},B={l,2,3,5,6},則集合B關于集合A的差集為________. 13.{4} 解析:由集合B關于集合A的差集的定義可知={4}. 14.已知命題p:關于的函數(shù)在上是增函數(shù).,命題q:為減函數(shù),若為真命題,則的取值范圍是____________。 14. 解析:命題p等價于,,即。由為減函數(shù)得:即。又因為為真命題,所以,均為真命題,所以取交集得。 15.xx年世博會在上海成功舉辦,使得旅游市場火爆。一家旅行社為了獲取更大的利潤,開發(fā)A、B兩類旅游產(chǎn)品,A類每條旅游線路的利潤是0.8萬元,B類每條旅游線路的利潤是0.5萬元,且A類旅游線路不能少于5條,B類旅游線路不能少于8條,兩類旅游線路的和不能超過20條,則該旅行社能從這兩類旅游產(chǎn)品中獲取的最大利潤是________萬元. 15.13.6 解析:設A類旅游線路開發(fā)條,B類旅游線路開發(fā)條,則,,不等式組表示的可行域是以(12,8),(5,8),(5,15)為頂點的三角形區(qū)域(含邊界),又,易知在點(12,8)處取得最大值,所以(萬元). 三、解答題(本大題共6小題,共74分.解答應寫出文字說明、證明過程或演算步驟) 17.(12分)集合A是由具有以下性質(zhì)的函數(shù)組成:對于任意,,且在上是增函數(shù). (1)試判斷及是否在集合A中,若不在A中,試說明理由; (2)對于(1)中你認為在集合A中的函數(shù),不等式是否對任意恒成立,試證明你的結(jié)論. 17.解:(1)當時,, 所以;…………………………3分 因為的值域為,且當時,為增函數(shù), 所以.…………………………6分 (2)因為 . 所以對任意,恒成立.…………………12分 19.(12分)(1)設是正實數(shù),求證:; (2)若,不等式是否仍然成立?如果成立給出證明;如果不成立,請舉出一個使它不成立的的值. 19.解:(1)是正實數(shù),由基本不等式知, ,,,…………………………3分 故(當時等號成立).…………………………6分 (2)若,不等式仍然成立. 證明:由(1)知,當時,不等式成立;…………………………8分 當時,,…………………………9分 而 , 此時不等式仍然成立.…………………………12分 20.(12分)已知函數(shù). (1)若在上是減函數(shù),求的取值范圍; (2)函數(shù)是否既有極大值又有極小值?若存在,求出的取值范圍;若不存在,請說明理由. 20.解:(1),…………………………1分 ∵在上為減函數(shù), ∴時恒成立,即恒成立.……………3分 設,則,…………………………4分 ∵時, ∴,∴在上單調(diào)遞減,,∴.……6分 (2)若既有極大值又有極小值,則必須有兩個不等的正實數(shù)根, 即有兩個不等的正實數(shù)根.…………………………7分 故應滿足, ∴當時,有兩個不等的正實數(shù)根,…………………………9分 不妨設,由知,時,時,時,……………………11分 ∴當時既有極大值又有極小值.…………………12分 21.(12分)已知函數(shù)是定義在上的奇函數(shù),且,若,,. (1)證明:函數(shù)在上是增函數(shù); (2)解不等式; (3)若不等式對所有恒成立,求實數(shù)的取值范圍. 21.解:(1)設任意,且,則由函數(shù)為奇函數(shù),知 .……………2分 ∵,,∴. ∴函數(shù)在上是增函數(shù).…………………………4分 (2)∵,∴ …………………………6分 解得.…………………………8分 (3)由(1),知在上是增函數(shù),且, 當時,.…………………………9分 ∵不等式對所有恒成立, ∴恒成立.…………………………10分 ∴,即或, ∴或.…………………………12分 .精品資料。歡迎使用。 .精品資料。歡迎使用。- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學二輪復習 專題1 集合教案 教案 2019 2020 年高 數(shù)學 二輪 復習 專題 集合
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-2753878.html