2019-2020年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版.doc
《2019-2020年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版.doc(11頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版 一.課標要求: 1.導數(shù)及其應用 (1)導數(shù)概念及其幾何意義 ① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念的實際背景,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內涵; ②通過函數(shù)圖像直觀地理解導數(shù)的幾何意義。 (2)導數(shù)的運算 ① 能根據(jù)導數(shù)定義求函數(shù)y=c,y=x,y=x2,y=x3,y=1/x,y=x 的導數(shù); ② 能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù),能求簡單的復合函數(shù)(僅限于形如f(ax+b))的導數(shù); ③ 會使用導數(shù)公式表。 (3)導數(shù)在研究函數(shù)中的應用 ① 結合實例,借助幾何直觀探索并了解函數(shù)的單調性與導數(shù)的關系;能利用導數(shù)研究函數(shù)的單調性,會求不超過三次的多項式函數(shù)的單調區(qū)間; ② 結合函數(shù)的圖像,了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求不超過三次的多項式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過三次的多項式函數(shù)最大值、最小值;體會導數(shù)方法在研究函數(shù)性質中的一般性和有效性。 (4)生活中的優(yōu)化問題舉例 例如,使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用。 (5)定積分與微積分基本定理 ① 通過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;借助幾何直觀體會定積分的基本思想,初步了解定積分的概念; ② 通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。 (6)數(shù)學文化 收集有關微積分創(chuàng)立的時代背景和有關人物的資料,并進行交流;體會微積分的建立在人類文化發(fā)展中的意義和價值。具體要求見本《標準》中"數(shù)學文化"的要求。 二.命題走向 導數(shù)是高中數(shù)學中重要的內容,是解決實際問題的強有力的數(shù)學工具,運用導數(shù)的有關知識,研究函數(shù)的性質:單調性、極值和最值是高考的熱點問題。在高考中考察形式多種多樣,以選擇題、填空題等主觀題目的形式考察基本概念、運算及導數(shù)的應用,也經常以解答題形式和其它數(shù)學知識結合起來,綜合考察利用導數(shù)研究函數(shù)的單調性、極值、最值,估計xx年高考繼續(xù)以上面的幾種形式考察不會有大的變化: (1)考查形式為:選擇題、填空題、解答題各種題型都會考察,選擇題、填空題一般難度不大,屬于高考題中的中低檔題,解答題有一定難度,一般與函數(shù)及解析幾何結合,屬于高考的中低檔題; (2)07年高考可能涉及導數(shù)綜合題,以導數(shù)為數(shù)學工具考察:導數(shù)的物理意義及幾何意義,復合函數(shù)、數(shù)列、不等式等知識。 定積分是新課標教材新增的內容,主要包括定積分的概念、微積分基本定理、定積分的簡單應用,由于定積分在實際問題中非常廣泛,因而07年的高考預測會在這方面考察,預測07年高考呈現(xiàn)以下幾個特點: (1)新課標第1年考察,難度不會很大,注意基本概念、基本性質、基本公式的考察及簡單的應用;高考中本講的題目一般為選擇題、填空題,考查定積分的基本概念及簡單運算,屬于中低檔題; (2)定積分的應用主要是計算面積,諸如計算曲邊梯形的面積、變速直線運動等實際問題要很好的轉化為數(shù)學模型。 三.要點精講 1.導數(shù)的概念 函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應地有增量=f(x+)-f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。 如果當時,有極限,我們就說函數(shù)y=f(x)在點x處可導,并把這個極限叫做f(x)在點x處的導數(shù),記作f’(x)或y’|。 即f(x)==。 說明: (1)函數(shù)f(x)在點x處可導,是指時,有極限。如果不存在極限,就說函數(shù)在點x處不可導,或說無導數(shù)。 (2)是自變量x在x處的改變量,時,而是函數(shù)值的改變量,可以是零。 由導數(shù)的定義可知,求函數(shù)y=f(x)在點x處的導數(shù)的步驟(可由學生來歸納): (1)求函數(shù)的增量=f(x+)-f(x); (2)求平均變化率=; (3)取極限,得導數(shù)f’(x)=。 2.導數(shù)的幾何意義 函數(shù)y=f(x)在點x處的導數(shù)的幾何意義是曲線y=f(x)在點p(x,f(x)) 處的切線的斜率。也就是說,曲線y=f(x)在點p(x,f(x))處的切線的斜率是f’(x)。相應地,切線方程為y-y=f/(x)(x-x)。 3.常見函數(shù)的導出公式. (1)(C為常數(shù)) ?。ǎ玻? (3) ?。ǎ矗? 4.兩個函數(shù)的和、差、積的求導法則 法則1:兩個函數(shù)的和(或差)的導數(shù),等于這兩個函數(shù)的導數(shù)的和(或差), 即: ( 法則2:兩個函數(shù)的積的導數(shù),等于第一個函數(shù)的導數(shù)乘以第二個函數(shù),加上第一個 函數(shù)乘以第二個函數(shù)的導數(shù),即: 若C為常數(shù),則.即常數(shù)與函數(shù)的積的導數(shù)等于常數(shù)乘以函數(shù)的導數(shù): 法則3兩個函數(shù)的商的導數(shù),等于分子的導數(shù)與分母的積,減去分母的導數(shù)與分子的積,再除以分母的平方:‘=(v0)。 形如y=f的函數(shù)稱為復合函數(shù)。復合函數(shù)求導步驟:分解——求導——回代。法則:y'|= y'| u'| 5.導數(shù)的應用 (1)一般地,設函數(shù)在某個區(qū)間可導,如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內恒有,則為常數(shù); (2)曲線在極值點處切線的斜率為0,極值點處的導數(shù)為0;曲線在極大值點左側切線的斜率為正,右側為負;曲線在極小值點左側切線的斜率為負,右側為正; (3)一般地,在區(qū)間[a,b]上連續(xù)的函數(shù)f在[a,b]上必有最大值與最小值。①求函數(shù)?在(a,b)內的極值; ②求函數(shù)?在區(qū)間端點的值?(a)、?(b); ③將函數(shù)? 的各極值與?(a)、?(b)比較,其中最大的是最大值,其中最小的是最小值。 6.定積分 (1)概念 設函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三數(shù)學第一輪復習單元講座 第38講 導數(shù)、定積分教案 新人教版 2019 2020 年高 數(shù)學 第一輪 復習 單元 講座 38 導數(shù) 積分 教案 新人
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-2663862.html