2019-2020年高中數(shù)學(xué)《立體幾何中的向量方法》教案4新人教A版選修2-1.doc
《2019-2020年高中數(shù)學(xué)《立體幾何中的向量方法》教案4新人教A版選修2-1.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《立體幾何中的向量方法》教案4新人教A版選修2-1.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《立體幾何中的向量方法》教案4新人教A版選修2-1 教學(xué)要求:向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用.掌握利用向量運(yùn)算解幾何題的方法,并能解簡(jiǎn)單的立體幾何問(wèn)題. 教學(xué)重點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用. 教學(xué)難點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用. 教學(xué)過(guò)程: 一、復(fù)習(xí)引入 1. 用向量解決立體幾何中的一些典型問(wèn)題的基本思考方法是:⑴如何把已知的幾何條件(如線(xiàn)段、角度等)轉(zhuǎn)化為向量表示;?、瓶紤]一些未知的向量能否用基向量或其他已知向量表式;?、侨绾螌?duì)已經(jīng)表示出來(lái)的向量進(jìn)行運(yùn)算,才能獲得需要的結(jié)論? 2. 通法分析:利用兩個(gè)向量的數(shù)量積的定義及其性質(zhì)可以解決哪些問(wèn)題呢? ⑴利用定義ab=|a||b|cos<a,b>或cos<a,b>=,可求兩個(gè)向量的數(shù)量積或夾角問(wèn)題; ⑵利用性質(zhì)a⊥bab=0可以解決線(xiàn)段或直線(xiàn)的垂直問(wèn)題; ?、抢眯再|(zhì)aa=|a|2,可以解決線(xiàn)段的長(zhǎng)或兩點(diǎn)間的距離問(wèn)題. 二、例題講解 1. 出示例1:已知空間四邊形OABC中,,.求證:. 證明:= =-. ∵,, ∴,, ,. ∴,. ∴=,=0. ∴ 2. 出示例2:如圖,已知線(xiàn)段AB在平面α內(nèi),線(xiàn)段,線(xiàn)段BD⊥AB,線(xiàn)段,,如果AB=a,AC=BD=b,求C、D間的距離. 解:由,可知. 由可知,<>=, ∴==+++2(++) ==. ∴. 3. 出示例3:如圖,M、N分別是棱長(zhǎng)為1的正方體的棱、的中點(diǎn).求異面直線(xiàn)MN與所成的角. 解:∵=,=, ∴==(+++). ∵,,,∴,,, ∴==. …求得 cos<>,∴<>=. 4. 小結(jié):利用向量解幾何題的一般方法:把線(xiàn)段或角度轉(zhuǎn)化為向量表示式,并用已知向量表示未知向量,然后通過(guò)向量的運(yùn)算去計(jì)算或證明. 三、鞏固練習(xí) 作業(yè):課本P116 練習(xí) 1、2題. 第二課時(shí): 3.2立體幾何中的向量方法(二) 教學(xué)要求:向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用.掌握利用向量運(yùn)算解幾何題的方法,并能解簡(jiǎn)單的立體幾何問(wèn)題. 教學(xué)重點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用. 教學(xué)難點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用. 教學(xué)過(guò)程: 一、復(fù)習(xí)引入 討論:將立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題的途徑? (1)通過(guò)一組基向量研究的向量法,它利用向量的概念及其運(yùn)算解決問(wèn)題; (2)通過(guò)空間直角坐標(biāo)系研究的坐標(biāo)法,它通過(guò)坐標(biāo)把向量轉(zhuǎn)化為數(shù)及其運(yùn)算來(lái)解決問(wèn)題. 二、例題講解 1. 出示例1: 如圖,在正方體中,E、F分別是、CD的中點(diǎn),求證:平面ADE. 證明:不妨設(shè)已知正方體的棱長(zhǎng)為1個(gè)單位長(zhǎng)度,且設(shè)=i,=j(luò),=k.以i、j、k為坐標(biāo)向量建立空間直角坐標(biāo)系D-xyz,則 ∵=(-1,0,0),=(0,,-1),∴=(-1,0,0)(0,,-1)=0,∴AD. 又 =(0,1,),∴=(0,1,)(0,,-1)=0, ∴ AE. 又 , ∴平面ADE. 說(shuō)明:⑴“不妨設(shè)”是我們?cè)诮忸}中常用的小技巧,通??捎糜谠O(shè)定某些與題目要求無(wú)關(guān)的一些數(shù)據(jù),以使問(wèn)題的解決簡(jiǎn)單化.如在立體幾何中求角的大小、判定直線(xiàn)與直線(xiàn)或直線(xiàn)與平面的位置關(guān)系時(shí),可以約定一些基本的長(zhǎng)度.⑵空間直角坐標(biāo)些建立,可以選取任意一點(diǎn)和一個(gè)單位正交基底,但具體設(shè)置時(shí)仍應(yīng)注意幾何體中的點(diǎn)、線(xiàn)、面的特征,把它們放在恰當(dāng)?shù)奈恢?,才能方便?jì)算和證明. 2. 出示例2:課本P116 例3 分析:如何轉(zhuǎn)化為向量問(wèn)題?進(jìn)行怎樣的向量運(yùn)算? 3. 出示例3:課本P118 例4 分析:如何轉(zhuǎn)化為向量問(wèn)題?進(jìn)行怎樣的向量運(yùn)算? 4. 出示例4:證:如果兩條直線(xiàn)同垂直于一個(gè)平面,則這兩條直線(xiàn)平行. 改寫(xiě)為:已知:直線(xiàn)OA⊥平面α,直線(xiàn)BD⊥平面α,O、B為垂足.求證:OA//BD. 證明:以點(diǎn)O為原點(diǎn),以射線(xiàn)OA為非負(fù)z軸,建立空間直角坐標(biāo)系O-xyz,i,j,k為沿x軸,y軸,z軸的坐標(biāo)向量,且設(shè)=. ∵BD⊥α, ∴⊥i,⊥j, ∴i=(1,0,0)=x=0,j=(0,1,0)=y(tǒng)=0, ∴=(0,0,z).∴=zk.即//k.由已知O、B為兩個(gè)不同的點(diǎn),∴OA//BD. 5. 法向量定義:如果表示向量a的有向線(xiàn)段所在直線(xiàn)垂直于平面α,則稱(chēng)這個(gè)向量垂直于平面α,記作a⊥α.如果a⊥α,那么向量a叫做平面α的法向量. 6. 小結(jié): 向量法解題“三步曲”:(1)化為向量問(wèn)題 →(2)進(jìn)行向量運(yùn)算 →(3)回到圖形問(wèn)題. 三、鞏固練習(xí) 作業(yè):課本P120、 習(xí)題A組 1、2題. 第三課時(shí): 3.2立體幾何中的向量方法(三) 教學(xué)要求:向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用.掌握利用向量運(yùn)算解幾何題的方法,并能解簡(jiǎn)單的立體幾何問(wèn)題. 教學(xué)重點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用. 教學(xué)難點(diǎn):向量運(yùn)算在幾何證明與計(jì)算中的應(yīng)用. 教學(xué)過(guò)程: 一、復(fù)習(xí)引入 1. 法向量定義:如果直線(xiàn), 取直線(xiàn)l的方向向量為,則向量叫作平面α的法向量(normal vectors). 利用法向量,可以巧妙的解決空間角度和距離. 2. 討論:如何利用法向量求線(xiàn)面角? → 面面角? 直線(xiàn)AB與平面α所成的角,可看成是向量所在直線(xiàn)與平面α的法向量所在直線(xiàn)夾角的余角,從而求線(xiàn)面角轉(zhuǎn)化為求直線(xiàn)所在的向量與平面的法向量的所成的線(xiàn)線(xiàn)角,根據(jù)兩個(gè)向量所成角的余弦公式,我們可以得到如下向量法的公式: . 3. 討論:如何利用向量求空間距離? 兩異面直線(xiàn)的距離,轉(zhuǎn)化為與兩異面直線(xiàn)都相交的線(xiàn)段在公垂向量上的投影長(zhǎng). 點(diǎn)到平面的距離,轉(zhuǎn)化為過(guò)這點(diǎn)的平面的斜線(xiàn)在平面的法向量上的投影長(zhǎng). 二、例題講解: 1. 出示例1:長(zhǎng)方體中,AD==2,AB=4,E、F分別是、AB的中點(diǎn),O是的交點(diǎn). 求直線(xiàn)OF與平面DEF所成角的正弦. 解:以點(diǎn)D為空間直角坐標(biāo)系的原點(diǎn),DA、DC、為坐標(biāo)軸,建立如圖所示的空間直角坐標(biāo)系. 則 . 設(shè)平面DEF的法向量為 , 則 , 而, . ∴ ,即, 解得, ∴ . ∵ , 而. ∴ 所以,直線(xiàn)OF與平面DEF所成角的正弦為. 2. 變式: 用向量法求:二面角余弦;OF與DE的距離;O點(diǎn)到平面DEF的距離. 三、鞏固練習(xí) 作業(yè):課本P121、 習(xí)題A組 5、6題.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 立體幾何中的向量方法 2019 2020 年高 數(shù)學(xué) 立體幾何 中的 向量 方法 教案 新人 選修
鏈接地址:http://italysoccerbets.com/p-2591524.html