2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第一節(jié) 三角函數(shù)教案 新人教版.doc
《2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第一節(jié) 三角函數(shù)教案 新人教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第一節(jié) 三角函數(shù)教案 新人教版.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第一節(jié) 三角函數(shù)教案 新人教版 【知識導(dǎo)讀】 任意角 的概念 角度制與 弧度制 任意角的 三角函數(shù) 弧長與扇形 面積公式 三角函數(shù)的 圖象和性質(zhì) 和 角 公 式 差 角 公 式 幾個三角 恒等式 倍 角 公 式 同角三角函數(shù)關(guān)系 誘 導(dǎo)公 式 正弦定理與余弦定理 解斜三角形及其應(yīng)用 化簡、計算、求值 與證明 【方法點撥】 三角函數(shù)是一種重要的初等函數(shù),它與數(shù)學(xué)的其它部分如解析幾何、立體幾何及向量等有著廣泛的聯(lián)系,同時它也提供了一種解決數(shù)學(xué)問題的重要方法——“三角法”.這一部分的內(nèi)容,具有以下幾個特點: 1.公式多.公式雖多,但公式間的聯(lián)系非常密切,規(guī)律性強.弄清公式間的相互聯(lián)系和推導(dǎo)體系,是記住這些公式的關(guān)鍵. 2.思想方法豐富.化歸、數(shù)形結(jié)合、分類討論和函數(shù)與方程的思想貫穿于本單元的始終,類比的思維方法在本單元中也得到充分的應(yīng)用.如將任意角的三角函數(shù)值的問題化歸為銳角的三角函數(shù)的問題,將不同名的三角函數(shù)問題化成同名的三角函數(shù)的問題,將不同角的三角函數(shù)問題化成同角的三角函數(shù)問題等. 3.變換靈活.有角的變換、公式的變換、三角函數(shù)名稱的變換、三角函數(shù)次數(shù)的變換、三角函數(shù)表達形式的變換及一些常量的變換等,并且有的變換技巧性較強. 4.應(yīng)用廣泛.三角函數(shù)與數(shù)學(xué)中的其它知識的結(jié)合點非常多,它是解決立體幾何、解析幾何及向量問題的重要工具,并且這部分知識在今后的學(xué)習(xí)和研究中起著十分重要的作用,比如在物理學(xué)、天文學(xué)、測量學(xué)及其它各門科學(xué)技術(shù)都有廣泛的應(yīng)用. 第1課 三角函數(shù)的概念 【考點導(dǎo)讀】 1. 理解任意角和弧度的概念,能正確進行弧度與角度的換算. 角的概念推廣后,有正角、負角和零角;與終邊相同的角連同角本身,可構(gòu)成一個集合;把長度等于半徑的圓弧所對的圓心角定義為1弧度的角,熟練掌握角度與弧度的互換,能運用弧長公式及扇形的面積公式=(為弧長)解決問題. 2. 理解任意角的正弦、余弦、正切的定義. 角的概念推廣以后,以角的頂點為坐標(biāo)原點,角的始邊為x軸的正半軸,建立直角坐標(biāo)系,在角的終邊上任取一點(不同于坐標(biāo)原點),設(shè)(),則的三個三角函數(shù)值定義為:. 從定義中不難得出六個三角函數(shù)的定義域:正弦函數(shù)、余弦函數(shù)的定義域為R;正切函數(shù)的定義域為. 3. 掌握判斷三角函數(shù)值的符號的規(guī)律,熟記特殊角的三角函數(shù)值. 由三角函數(shù)的定義不難得出三個三角函數(shù)值的符號,可以簡記為:一正(第一象限內(nèi)全為正值),二正弦(第二象限內(nèi)只有正弦值為正),三切(第三象限只有正切值為正),四余弦(第四象限內(nèi)只有余弦值為正).另外,熟記、、、、的三角函數(shù)值,對快速、準(zhǔn)確地運算很有好處. 4. 掌握正弦線、余弦線、正切線的概念. 在平面直角坐標(biāo)系中,正確地畫出一個角的正弦線、余弦線和正切線,并能運用正弦線、余弦線和正切線理解三角函數(shù)的性質(zhì)、解決三角不等式等問題. 【基礎(chǔ)練習(xí)】 1. 化成的形式是 ?。? 第二或第四象限 2.已知為第三象限角,則所在的象限是 . 3.已知角的終邊過點,則= , = . 正 4.的符號為 . 5.已知角的終邊上一點(),且,求,的值. 解:由三角函數(shù)定義知,,當(dāng)時,,; 當(dāng)時,,. 【范例解析】 例1.如圖,,分別是終邊落在,位置上的兩個角, 且,. (1)求終邊落在陰影部分(含邊界)時所有角的集合; (2)終邊落在陰影部分,且在區(qū)間時所有角的集合; (3)求始邊在位置上,終邊在位置上所有角的集合. 解:(1); (2); (3),. 點評:三角函數(shù)中應(yīng)注意文字語言與符號語言的轉(zhuǎn)化;第(3)問要注意角的方向. 例2.(1)已知角的終邊經(jīng)過一點,求的值; (2)已知角的終邊在一條直線上,求,的值. 分析:利用三角函數(shù)定義求解. 解:(1)由已知,.當(dāng)時,,,,則; 當(dāng)時,,,,則. (2)設(shè)點是角的終邊上一點,則; 當(dāng)時,角是第一象限角,則; 當(dāng)時,角是第三象限角,則. 點評:要注意對參數(shù)進行分類討論. 例3.(1)若,則在第_____________象限. (2)若角是第二象限角,則,,,,中能確定是正值的有____個. 解:(1)由,得,同號,故在第一,三象限. (2)由角是第二象限角,即,得,,故僅有為正值. 點評:準(zhǔn)確表示角的范圍,由此確定三角函數(shù)的符號. 例4. 一扇形的周長為,當(dāng)扇形的圓心角等于多少時,這個扇形的面積最大?最大面積是多少? 分析:選取變量,建立目標(biāo)函數(shù)求最值. 解:設(shè)扇形的半徑為x㎝,則弧長為㎝,故面積為, 當(dāng)時,面積最大,此時,,, 所以當(dāng)弧度時,扇形面積最大25. 點評:由于弧度制引入,三角函數(shù)就可以看成是以實數(shù)為自變量的函數(shù). 【反饋演練】 二 1.若且則在第_______象限. 三 2.已知,則點在第________象限. 3.已知角是第二象限,且為其終邊上一點,若,則m的值為_______. 4.將時鐘的分針撥快,則時針轉(zhuǎn)過的弧度為 . 5.若,且與終邊相同,則= . 6.已知1弧度的圓心角所對的弦長2,則這個圓心角所對的弧長是_______,這個圓心角所在的扇形的面積是___________. 三 7.已知,,則點在第 象限. 8.已知,角的終邊與的終邊關(guān)于直線對稱,則角的集合為____________________. 三 9.設(shè)是第二象限角,且滿足,則是第_______象限的角. 10.(1)已知扇形的周長是6cm,該扇形中心角是1弧度,求該扇形面積. (2)若扇形的面積為8,當(dāng)扇形的中心角為多少弧度時,該扇形周長最?。? 簡解:(1)該扇形面積2; (2),得,當(dāng)且僅當(dāng)時取等號.此時,,. 11.已知角的頂點在原點,始邊為軸的非負半軸,終邊在直線上,求的值. 解:當(dāng)角在第一象限時,,,, 則; 當(dāng)角在第三象限時,,,, 則. 12.已知,且,判斷的符號. 解:由已知是第二象限,則,,,,故.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第一節(jié) 三角函數(shù)教案 新人教版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 三角函數(shù) 教案 新人
鏈接地址:http://italysoccerbets.com/p-2584719.html