2019-2020年高中數(shù)學《1.1.2 余弦定理》教案 新人教A版必修5.doc
《2019-2020年高中數(shù)學《1.1.2 余弦定理》教案 新人教A版必修5.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學《1.1.2 余弦定理》教案 新人教A版必修5.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學《1.1.2 余弦定理》教案 新人教A版必修5 高二數(shù)學 教學案 主備人: 執(zhí)教者: 【學習目標】 1.掌握余弦定理的兩種表示形式及證明余弦定理的向量方法,并會運用余弦定理解決兩類基本的解三角形問題。 2.利用向量的數(shù)量積推出余弦定理及其推論,并通過實踐演算掌握運用余弦定理解決兩類基本的解三角形問題 【學習重點】余弦定理的發(fā)現(xiàn)和證明過程及其基本應用; 【學習難點】勾股定理在余弦定理的發(fā)現(xiàn)和證明過程中的作用。 【授課類型】新授課 【教 具】課件、電子白板 【學習方法】 【學習過程】 1、 引入: 1.什么是正弦定理?什么是解三角形? 2.思考:如圖1.1-4,在ABC中,設BC=a,AC=b,AB=c, 已知a,b和C,求邊c 二、新課學習: 聯(lián)系已經(jīng)學過的知識和方法,可用什么途徑來解決這個問題? 用正弦定理試求,發(fā)現(xiàn)因A、B均未知,所以較難求邊c。由于涉及邊長問題,從而可以考慮用向量來研究這個問題。 如圖1.1-5,設,,,那么,則 從而 同理可證 于是得到以下定理 余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍。 即 思考:這個式子中有幾個量?從方程的角度看已知其中三個量,可以求出第四個量,能否由三邊求出一角? (由學生推出)從余弦定理,又可得到以下推論: [理解定理] 從而知余弦定理及其推論的基本作用為: ①已知三角形的任意兩邊及它們的夾角就可以求出第三邊; ②已知三角形的三條邊就可以求出其它角。 思考:勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的關系? (由學生總結)若ABC中,C=,則,這時 由此可知余弦定理是勾股定理的推廣,勾股定理是余弦定理的特例。 3、 特例示范: 例1.在ABC中,已知,,,求b及A 例2.在ABC中,已知,,,解三角形 四、當堂練習: 第8頁練習第1、2題。 五、本節(jié)小結: (1)余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理的特例; (2)余弦定理的應用范圍:①.已知三邊求三角;②.已知兩邊及它們的夾角,求第三邊。 六、作業(yè)布置:學案1.1.2 個性設計 課后反思:- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 1.1.2 余弦定理 2019-2020年高中數(shù)學1.1.2 余弦定理教案 新人教A版必修5 2019 2020 年高 數(shù)學 1.1 余弦 定理 教案 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://italysoccerbets.com/p-2571368.html