2019-2020年高中數(shù)學(xué) 2.2.1《雙曲線的定義和標(biāo)準(zhǔn)方程》說課教案 湘教版選修1-1.doc
《2019-2020年高中數(shù)學(xué) 2.2.1《雙曲線的定義和標(biāo)準(zhǔn)方程》說課教案 湘教版選修1-1.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 2.2.1《雙曲線的定義和標(biāo)準(zhǔn)方程》說課教案 湘教版選修1-1.doc(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 2.2.1《雙曲線的定義和標(biāo)準(zhǔn)方程》說課教案 湘教版選修1-1 一、教材分析與處理 1、 教材的地位與作用 學(xué)生初步認(rèn)識(shí)圓錐曲線是從橢圓開始的,雙曲線的學(xué)習(xí)是對(duì)其研究內(nèi)容的進(jìn)一步深化和提高。如果雙曲線研究的透徹、清楚,那么拋物線的學(xué)習(xí)就會(huì)順理成章。所以說本節(jié)課的作用就是縱向承接橢圓定義和標(biāo)準(zhǔn)方程的研究,橫向?yàn)殡p曲線的簡單性質(zhì)的學(xué)習(xí)打下基礎(chǔ)。 2、 學(xué)生狀況分析: 學(xué)生在學(xué)習(xí)這節(jié)課之前,已掌握了橢圓的定義和標(biāo)準(zhǔn)方程,也曾經(jīng)嘗試過探究式的學(xué)習(xí)方式,所以說從知識(shí)和學(xué)習(xí)方式上來說學(xué)生已具備了自行探索和推導(dǎo)方程的基礎(chǔ)。另外,高二學(xué)生思維活躍,敢于表現(xiàn)自己,不喜歡被動(dòng)地接受別人現(xiàn)成的觀點(diǎn),但同時(shí)也缺乏發(fā)現(xiàn)問題和提出問題的意識(shí)。 根據(jù)以上對(duì)教材和學(xué)生的分析,考慮到學(xué)生已有的認(rèn)知規(guī)律我希望學(xué)生能達(dá)到以下三個(gè)教學(xué)目標(biāo)。 3、 教學(xué)目標(biāo) (1)知識(shí)與技能:理解雙曲線的定義并能獨(dú)立推導(dǎo)標(biāo)準(zhǔn)方程; (2)過程與方法:通過定義及標(biāo)準(zhǔn)方程的挖掘與探究 ,使學(xué)生進(jìn)一步體驗(yàn)類比及數(shù)形結(jié)合等思想方法的運(yùn)用,提高學(xué)生的觀察與探究能力; (3)情感態(tài)度與價(jià)值觀:通過教師指導(dǎo)下的學(xué)生交流探索活動(dòng),激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)認(rèn)識(shí)問題。 4. 教學(xué)重點(diǎn)、難點(diǎn) 依據(jù)教學(xué)目標(biāo),根據(jù)學(xué)生的認(rèn)知規(guī)律,確定本節(jié)課的重點(diǎn)是理解和掌握雙曲線的定義及其標(biāo)準(zhǔn)方程。難點(diǎn)是雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)。 5、 教材處理: 我對(duì)教學(xué)內(nèi)容作了一點(diǎn)調(diào)整:教材中是借用細(xì)繩畫出的雙曲線圖形,而我改用幾何畫板畫出雙 曲線圖形。因?yàn)橄啾戎?,幾何畫板更為形象直觀。通過幾何畫板,學(xué)生不僅可看到雙曲線形 成的過程,而且較易看出橢圓與雙曲線形成的聯(lián)系和區(qū)別。 二、 教學(xué)方法與教學(xué)手段 1、教學(xué)方法 著名數(shù)學(xué)家波利亞認(rèn)為:“學(xué)習(xí)任何東西最好的途徑是自己去發(fā)現(xiàn)?!? 雙曲線的定義和標(biāo)準(zhǔn)方程與橢圓很類似,學(xué)生已經(jīng)有了一些學(xué)習(xí)橢圓的經(jīng)驗(yàn), 所以本節(jié)課我 采用了“啟發(fā)探究”式的教學(xué)方法,重點(diǎn)突出以下兩點(diǎn): (1) 以類比思維作為教學(xué)的主線 (2) 以自主探究作為學(xué)生的學(xué)習(xí)方法 2、 教學(xué)手段 采用多媒體輔助教學(xué)。體現(xiàn)在用幾何畫板畫雙曲線。但不是單純用動(dòng)畫演示給學(xué)生看,而是用動(dòng)畫啟發(fā)引導(dǎo)學(xué)生思考,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。 三、教學(xué)過程與設(shè)計(jì) 為達(dá)到本節(jié)課的教學(xué)目標(biāo),更好地突出重點(diǎn),分散難點(diǎn),我把教學(xué)過程分為四個(gè)階段。 (一) 知識(shí)引入---- 知識(shí)回顧、觀察動(dòng)畫、概括定義 在課的開始我設(shè)置了這樣幾個(gè)問題,以幫助學(xué)生進(jìn)行知識(shí)回顧: (1) 橢圓的第一定義是什么?定義中哪些字非常關(guān)鍵? (2) 橢圓的標(biāo)準(zhǔn)方程是什么? (3) 如何判斷焦點(diǎn)位置?a、b、c是何種關(guān)系?(片) 通過回顧,既檢測(cè)了學(xué)生對(duì)前面知識(shí)的掌握情況,同時(shí)又為下面雙曲線的學(xué)習(xí)做好鋪墊。之后, 告訴學(xué)生:今天要學(xué)習(xí)一種新的曲線。 打開幾何畫板,首先通過動(dòng)畫讓學(xué)生再一次回顧橢圓的生成過程,然后改變圖中的條件,將 距離變大,動(dòng)畫生成一種新的曲線,學(xué)生易看出該曲線為雙曲線。 雙曲線的定義其實(shí)就是動(dòng)點(diǎn)所滿足的關(guān)系,那么雙曲線的定義是什么?也就是動(dòng)點(diǎn)所滿足的關(guān)系是 什么?這個(gè)問題可讓學(xué)生進(jìn)行探究。 解決這個(gè)問題有兩個(gè)難點(diǎn):一是距離的運(yùn)算關(guān)系的得出;二是運(yùn)算關(guān)系的簡化。 在探究中,學(xué)生類比橢圓會(huì)想到動(dòng)點(diǎn)到兩定點(diǎn)的距離差為定值,會(huì)認(rèn)為這個(gè)定值必是正值,而忽視 了距離差為負(fù)值的情況,這樣實(shí)質(zhì)上只能得到雙曲線的一支。對(duì)于這種情況,我采取啟發(fā)引導(dǎo),把 P從一支移到另一支,然后讓學(xué)生再次思考自己得到的關(guān)系是否正確。在引導(dǎo)下,學(xué)生會(huì)想到自己缺少 一種情況,動(dòng)點(diǎn)到兩定點(diǎn)的距離差為正值或正值的相反數(shù)。但這個(gè)關(guān)系能不能加以簡化?學(xué)生這個(gè)時(shí)候 會(huì)聯(lián)想到利用絕對(duì)值進(jìn)行簡化。這樣就得到了動(dòng)點(diǎn)所滿足的較為精煉的關(guān)系,也就是得到了雙曲線的 定義。 這一設(shè)計(jì)讓學(xué)生先形象直觀地看到橢圓與雙曲線的形成過程,在此基礎(chǔ)上,再通過教師的引導(dǎo),學(xué) 生就可在觀察思考中一步一步地由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),最終得到雙曲線定義,從而培養(yǎng)了學(xué)生的 觀察能力及概括能力。另外,這一設(shè)計(jì)也在形的方面實(shí)現(xiàn)了橢圓與雙曲線的比較,也為下面雙曲線定義 的挖掘及兩種曲線的對(duì)比打下基礎(chǔ)。 隨著雙曲線定義的得出,教學(xué)進(jìn)入第二階段---知識(shí)探索 (二) 知識(shí)探索---- 定義的挖掘、標(biāo)準(zhǔn)方程的推導(dǎo)、方程的對(duì)比 1、定義的挖掘 在這一環(huán)節(jié)中,我們要認(rèn)識(shí)到定義中的絕對(duì)值和兩點(diǎn)間距離與常數(shù)的大小關(guān)系二者對(duì)曲線的影響。 首先,我設(shè)置了這樣兩個(gè)問題: (1)類比橢圓尋找雙曲線定義中的關(guān)鍵字; (2)若分別去掉這幾個(gè)關(guān)鍵字曲線會(huì)發(fā)生怎樣變化?(片) 然后讓學(xué)生帶著問題進(jìn)行合作探究,教師可適當(dāng)引導(dǎo),對(duì)于學(xué)生難以理解的地方適時(shí)給予幫助指導(dǎo)。 雖然學(xué)生學(xué)習(xí)橢圓定義時(shí)也接觸過類似問題,但雙曲線較為復(fù)雜,比如 :增加了“絕對(duì)值”等等。學(xué)生要獨(dú)立完成會(huì)較為困難,所以采取合作探究。這個(gè)過程既可以加深學(xué)生對(duì)定義的理解,又讓可學(xué)生在相互交流中互相啟發(fā)、激勵(lì)、共同進(jìn)步提高,從而培養(yǎng)學(xué)生的表達(dá)能力和協(xié)作能力。 在得出結(jié)論后,我又為學(xué)生提供了以下題目: 請(qǐng)說出下列方程對(duì)應(yīng)曲線的名稱: (3) (雙曲線) (4) (雙曲線右支) (5) (橢圓) (6)(以(0,4)為端點(diǎn),沿著y軸正向的一條線)(片) 這些題目由淺入深,前面兩題學(xué)生可由雙曲線定義直接認(rèn)識(shí)到動(dòng)點(diǎn)的幾何含義,后四題需根據(jù)兩點(diǎn)間距離公式及橢圓雙曲線定義間接認(rèn)識(shí)到動(dòng)點(diǎn)的幾何含義。這樣設(shè)置有了過渡,學(xué)生不會(huì)覺得跨度很大,處理起來比較順手。通過這些題的練習(xí)可以加深學(xué)生對(duì)定義的理解,更重要的這些題目就是學(xué)生對(duì)自己研究結(jié)果的應(yīng)用。讓學(xué)生體驗(yàn)到應(yīng)用自己探究果實(shí)的喜悅,對(duì)學(xué)生來說是一種激勵(lì),一舉兩得。 2、 標(biāo)準(zhǔn)方程的推導(dǎo) 這一環(huán)節(jié)是本節(jié)課的難點(diǎn),為了突破它,我設(shè)置了這樣幾個(gè)問題讓其貫穿推導(dǎo)過程以將難點(diǎn)分解: (1) 回顧橢圓標(biāo)準(zhǔn)方程的推導(dǎo)步驟及方法; (2) 類比橢圓試著推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程; (3) 換元處理與橢圓有沒有區(qū)別? (4) 猜證雙曲線焦點(diǎn)在 y軸上的標(biāo)準(zhǔn)方程。(片) 然后讓學(xué)生獨(dú)立完成推導(dǎo)過程。 這樣設(shè)置的目的是考慮到由定義求方程,就是求軌跡方程的問題,并且雙曲線的標(biāo)準(zhǔn)方程推導(dǎo)過程 與橢圓十分類似,學(xué)生有能力獨(dú)立完成。但在由于化簡根式時(shí)運(yùn)算量較大,處理起來很可能出現(xiàn)一些運(yùn) 算錯(cuò)誤。另外,變形時(shí)絕大多數(shù)學(xué)生會(huì)想到先移項(xiàng)再平方,少部分學(xué)生會(huì)直接平方。若直接平方,就會(huì) 出現(xiàn)4次方,較為復(fù)雜。如果在實(shí)際教學(xué)中,有學(xué)生提出這種做法,我會(huì)讓然后讓大家參與分析討論, 看看哪種做法更為簡便。以讓學(xué)生認(rèn)識(shí)到今后在變形前要考慮清楚不要盲目去做。 整個(gè)這個(gè)推導(dǎo)過程,不僅提高了學(xué)生的變形能力、運(yùn)算能力,而且也提高學(xué)生的分析問題和解決問題 的能力。 3、 方程的對(duì)比 此時(shí),學(xué)生接觸的方程已比較多,很容易混淆,有必要加以對(duì)比。 我引導(dǎo)學(xué)生進(jìn)行以下兩組對(duì)比:(1)雙曲線方程的兩種形式的對(duì)比;(2)橢圓方程與雙曲線方程 的對(duì)比。(片) 對(duì)比時(shí)會(huì)讓學(xué)生注意方程結(jié)構(gòu)的區(qū)別和聯(lián)系,比如說:到底是平方差還是平方和。另外,還要注意 橢圓方程和雙曲線方程都涉及到的三個(gè)量a、b、c它們的區(qū)別和聯(lián)系。 對(duì)比后,學(xué)生可初步的分清四個(gè)標(biāo)準(zhǔn)方程及知道如何判斷a、b 、c。 之后,我又準(zhǔn)備了這樣一組題: 請(qǐng)說出下列方程所表示曲線的焦點(diǎn)位置及a、 b 、c的值: (片) 可以檢測(cè)學(xué)生對(duì)四個(gè)方程的掌握程度。學(xué)生處理時(shí),前三題起來會(huì)比較順利,第4題很可能出現(xiàn) 問題。因?yàn)樾枳兂蓸?biāo)準(zhǔn)形式之后再判斷焦點(diǎn)位置及a、b、c的值。 (三) 知識(shí)應(yīng)用----例題與鞏固練習(xí) 1、例題: 在本環(huán)節(jié)中我為學(xué)生準(zhǔn)備處理兩道例題,例題可由學(xué)生講解,教師指導(dǎo)補(bǔ)充。 例1、 已知雙曲線焦點(diǎn)的坐標(biāo)為 ,雙曲線上一點(diǎn)P到 的距離的差的 絕對(duì)值等于6,求雙曲線的標(biāo)準(zhǔn)方程。 這道題難度不大,可直接利用定義求標(biāo)準(zhǔn)方程。也可以按求軌跡方程的方法求標(biāo)準(zhǔn)方程,學(xué)生 不會(huì)出現(xiàn)太大問題。但是要向?qū)W生指明,如果某種軌跡適合某種曲線的定義,就不必再用列方程求解, 只要利用定義求出常規(guī)待定函數(shù)即可。 例2、 已知雙曲線的焦點(diǎn)在y 軸上,并且雙曲線上兩點(diǎn)的坐標(biāo)為 求雙曲線的標(biāo)準(zhǔn)方程。(片) 這道題可采用待定系數(shù)法求標(biāo)準(zhǔn)方程。本題中雙曲線焦點(diǎn)在y軸上,學(xué)生在求解過程中很可能會(huì) 忽視這個(gè)條件,易將方程設(shè)成焦點(diǎn)在x軸的。教師可及時(shí)加以強(qiáng)調(diào),讓學(xué)生注意審題,以培養(yǎng)學(xué)生緊密 的思維和嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。 設(shè)置兩道題是考慮到他們都來源于教材,緊緊圍繞雙曲線的定義和標(biāo)準(zhǔn)方程,題目典型而且也有 梯度,可使學(xué)生初步掌握定義及標(biāo)準(zhǔn)方程的應(yīng)用。 2、 鞏固練習(xí) 練習(xí)是學(xué)習(xí)活動(dòng)中不可缺少的環(huán)節(jié),可鞏固對(duì)知識(shí)的理解,在這一環(huán)節(jié)我為學(xué)生準(zhǔn)備了三道 練習(xí)題。 (1)已知雙曲線的實(shí)軸長為6,焦距為10,則該雙曲線的標(biāo)準(zhǔn)方程為( ) A. B. C. 或 D. 或 此題是求焦點(diǎn)不確定的雙曲線標(biāo)準(zhǔn)方程,學(xué)生易忽視焦點(diǎn)在y軸的情況,通過此題的練習(xí)可以提醒 學(xué)生考慮問題要全面。 (2)已知方程表示雙曲線,求m取值范圍。 此題限制條件為m+2 和m+1同號(hào),但會(huì)有一些學(xué)生會(huì)認(rèn)為它們均大于0,忽視了均小于0 的情況,因此會(huì)丟解,所以通過這道題的練習(xí)會(huì)提醒學(xué)生考慮問題要認(rèn)真、全面,同時(shí)又可加深學(xué) 生對(duì)定義及標(biāo)準(zhǔn)方程的理解。 (3)相距2km的兩個(gè)哨所A,B都聽到遠(yuǎn)處傳來的炮彈爆炸聲,已知當(dāng)時(shí)的聲速為330m\s, 在A哨所聽到爆炸聲的時(shí)間比在B處遲4s。試判斷爆炸點(diǎn)在什么上,并求出曲線的方程。(片) 這道題是從生活中提煉出的數(shù)學(xué)問題,設(shè)計(jì)此題的目的是想通過練習(xí)題的解決可以加強(qiáng)學(xué)生的 應(yīng)用能力及應(yīng)用意識(shí),讓學(xué)生感悟到數(shù)學(xué)是源于生活,服務(wù)于生活的辨證唯物主義觀點(diǎn)。 (四)知識(shí)小結(jié)----歸納知識(shí)與布置作業(yè) 1、知識(shí)總結(jié): (1)雙曲線的定義 (與橢圓的區(qū)別) (2)標(biāo)準(zhǔn)方程 (兩種形式) (3)焦點(diǎn)位置的判斷 (與橢圓的區(qū)別) (4)a 、b、 c的關(guān)系(與橢圓的區(qū)別)(片) 在課的尾聲,我讓學(xué)生對(duì)本節(jié)課進(jìn)行了總結(jié)。目的是幫助他們認(rèn)清這節(jié)課的知識(shí)結(jié)構(gòu), 培 養(yǎng)他們的歸納總結(jié)能力。 2、 作業(yè): (1) 用表格形式整理雙曲線與橢圓的區(qū)別和聯(lián)系 (2) XX頁第XX題 (3) (選做)M是雙曲線上一點(diǎn),是雙曲線的焦點(diǎn),,求 的面積。若使雙曲線的方程和角度任意變化,你能得出一般性的結(jié)論?(片) 教學(xué)內(nèi)涵不局限于課堂,為了幫助學(xué)生課下能夠繼續(xù)探索和研究,我設(shè)置了幾組不同層次的作 業(yè),以幫助學(xué)生鞏固對(duì)定義和標(biāo)準(zhǔn)方程的理解,同時(shí)可全面照顧到不同層次的學(xué)生,激發(fā)他們的能動(dòng)性。 板書設(shè)計(jì) 雙曲線的定義及其標(biāo)準(zhǔn)方程 一、 雙曲線的定義 三 例1: 定義的挖掘 二、 雙曲線的標(biāo)準(zhǔn)方程 例2 1、 推導(dǎo): 2、 對(duì)比: (片) 這樣的板書設(shè)計(jì)目的是為了突出這節(jié)課的主要內(nèi)容和重點(diǎn),幫助學(xué)生理清思緒,起到提綱 挈領(lǐng)的作用。 四、教學(xué)設(shè)計(jì)的想法說明: 我在教學(xué)過程設(shè)計(jì)方面注意了三點(diǎn): 1. 教學(xué)過程的著力點(diǎn)放在了如何激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),培養(yǎng)學(xué)生的學(xué)習(xí)興趣上,這是喚醒學(xué)生主 體認(rèn)識(shí)的關(guān)鍵。 2. 教學(xué)過程的重點(diǎn)放在了培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力上,而把握重點(diǎn)的關(guān)鍵是如何選擇好創(chuàng)新 精神、實(shí)踐能力與課堂教學(xué)的結(jié)合,這個(gè)結(jié)合點(diǎn)從學(xué)科來說,就是以科學(xué)知識(shí)為載體,培養(yǎng)學(xué)生 的創(chuàng)新思維方法;從教師來說就是“思路、教路、學(xué)路”三者有機(jī)結(jié)合的教學(xué)過程設(shè)計(jì),及其在 課堂中的藝術(shù)展現(xiàn);從學(xué)生來說,就是親歷、體驗(yàn)、探究、思考和創(chuàng)造性的解決問題的過程,從 而在過程中獲得逐步發(fā)展。 3. 教學(xué)過程的基本點(diǎn)放在了夯實(shí)基礎(chǔ)知識(shí)和訓(xùn)練基本技能上,基礎(chǔ)知識(shí)的教學(xué)注重了層次性、針對(duì)性。 我在教學(xué)理念方面注重了四點(diǎn) 第一是能動(dòng)性:師生互動(dòng)、生生互動(dòng),學(xué)生主動(dòng)參與研究過程。 第二是開放性:教學(xué)過程中關(guān)注每個(gè)學(xué)生的個(gè)性發(fā)展,尊重每個(gè)學(xué)生發(fā)展的特殊需要,學(xué)生的思維開放。 第三是生成性:在教學(xué)過程中,學(xué)生的認(rèn)識(shí)和體驗(yàn)不斷加深,創(chuàng)造性的火花不斷進(jìn)發(fā),學(xué)生的思維資源 被開發(fā)出來,充分利用。 第四是注意了學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,既注重了研究性學(xué)習(xí),又注重了接受性學(xué)習(xí),教師不把現(xiàn)成結(jié)論告 訴學(xué)生,而是學(xué)生自己在教師指導(dǎo)下自主地發(fā)現(xiàn)問題、探究問題獲得結(jié)論,從而解決問題。對(duì)于新概念教學(xué) 的我采取了教授性學(xué)習(xí)方式。 我的說課到此結(jié)束,謝謝大家!- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 雙曲線的定義和標(biāo)準(zhǔn)方程 2019-2020年高中數(shù)學(xué) 2.2.1雙曲線的定義和標(biāo)準(zhǔn)方程說課教案 湘教版選修1-1 2019 2020 年高 數(shù)學(xué) 2.2 雙曲線 定義 標(biāo)準(zhǔn) 方程 教案 湘教版 選修
鏈接地址:http://italysoccerbets.com/p-2434686.html