2019年高考數(shù)學(xué)一輪復(fù)習(xí) 10-7拋物線(xiàn)同步檢測(cè)(2)文.doc
《2019年高考數(shù)學(xué)一輪復(fù)習(xí) 10-7拋物線(xiàn)同步檢測(cè)(2)文.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019年高考數(shù)學(xué)一輪復(fù)習(xí) 10-7拋物線(xiàn)同步檢測(cè)(2)文.doc(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019年高考數(shù)學(xué)一輪復(fù)習(xí) 10-7拋物線(xiàn)同步檢測(cè)(2)文 一、選擇題 1.直線(xiàn)l過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),且與拋物線(xiàn)交于A、B兩點(diǎn),若線(xiàn)段AB的長(zhǎng)是8,AB的中點(diǎn)到y(tǒng)軸的距離是2,則此拋物線(xiàn)的方程是( ) A.y2=12x B.y2=8x C.y2=6x D.y2=4x 解析:設(shè)A(x1,y1)、B(x2,y2),由拋物線(xiàn)定義可得x1+x2+p=8,又AB中點(diǎn)到y(tǒng) 軸的距離為2, ∴x1+x2=4,∴p=4. 答案:B 2.[xx·石家莊質(zhì)檢一]若拋物線(xiàn)y2=2px上一點(diǎn)P(2,y0)到其準(zhǔn)線(xiàn)的距離為4,則拋物線(xiàn)的標(biāo)準(zhǔn)方程為( ) A.y2=4x B.y2=6x C.y2=8x D.y2=10x 解析:由題意,得2-=4,p=4,所以?huà)佄锞€(xiàn)的方程為y2=8x,故選C. 答案:C 3.以坐標(biāo)軸為對(duì)稱(chēng)軸,原點(diǎn)為頂點(diǎn)且過(guò)圓x2+y2-2x+6y+9=0圓心的拋物線(xiàn)方程是( ) A.y=3x2或y=-3x2 B.y=3x2 C.y2=-9x或y=3x2 D.y=-3x2或y2=9x 解析:設(shè)拋物線(xiàn)方程為x2=ay或y2=ax(a≠0),把圓心(1,-3)代入方程得a=-或a=9,∴拋物線(xiàn)方程是y=-3x2或y2=9x. 答案:D 4.已知直線(xiàn)l過(guò)拋物線(xiàn)C的焦點(diǎn),且與C的對(duì)稱(chēng)軸垂直,l與C交于A、B兩點(diǎn),|AB|=12,P為C的準(zhǔn)線(xiàn)上一點(diǎn),則△ABP的面積為( ) A.18 B.24 C.36 D.48 解析:設(shè)拋物線(xiàn)方程為y2 =2px, 當(dāng)x=時(shí),y2=p2,∴|y|=p, ∴p===6, 又點(diǎn)P到AB的距離始終為6, ∴S△ABP=×12×6=36,故選C. 答案:C 5.拋物線(xiàn)y=-x2上的點(diǎn)到直線(xiàn)4x+3y-8=0距離的最小值是( ) A. B. C. D.3 解析:設(shè)與直線(xiàn)4x+3y-8=0平行且與拋物線(xiàn)相切的直線(xiàn)為4x+3y+t=0,與拋物線(xiàn)y=-x2聯(lián)立得3x2-4x-t=0,由Δ=16+12t=0,得t=-,兩條平行線(xiàn)的距離為所求最小距離,由兩條平行線(xiàn)的距離公式得所求距離為. 答案:A 6.設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A在y軸上,若線(xiàn)段FA的中點(diǎn)B在拋物線(xiàn)上,且點(diǎn)B到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為,則點(diǎn)A的坐標(biāo)為( ) A.(0,±2) B.(0,2) C.(0,±4) D.(0,4) 解析:在△AOF中,點(diǎn)B為邊AF的中點(diǎn),故點(diǎn)B的橫坐標(biāo)為,因此=+,解得p=,故拋物線(xiàn)方程為y2=2x,可得點(diǎn)B坐標(biāo)為,故點(diǎn)A的坐標(biāo)為(0,±2). 答案:A 7.已知拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)與曲線(xiàn)x2+y2-6x-7=0相切,則p的值為( ) A.2 B.1 C. D. 解析:注意到拋物線(xiàn)y2=2px的準(zhǔn)線(xiàn)方程是x=-,曲線(xiàn)x2+y2-6x-7=0,即(x-3)2+y2=16是圓心為(3,0),半徑為4的圓.于是依題意有|+3|=4.又p>0,因此有+3=4,解得p=2. 答案:A 8.已知過(guò)拋物線(xiàn)y2=6x焦點(diǎn)的弦長(zhǎng)為12,則此弦所在直線(xiàn)的傾斜角是( ) A.或 B.或 C.或 D. 解析:由焦點(diǎn)弦長(zhǎng)公式|AB|=得=12, 所以sinθ=,所以θ=或. 答案:B 9.拋物線(xiàn)y2=2px的焦點(diǎn)為F,點(diǎn)A、B、C在此拋物線(xiàn)上,點(diǎn)A坐標(biāo)為(1,2).若點(diǎn)F恰為△ABC的重心,則直線(xiàn)BC的方程為( ) A.x+y=0 B.x-y=0 C.2x+y-1=0 D.2x-y-1=0 解析:∵點(diǎn)A在拋物線(xiàn)上,∴4=2p,p=2,拋物線(xiàn)方程為y2=4x,焦點(diǎn)F(1,0), 設(shè)點(diǎn)B(x1,y1),點(diǎn)C(x2,y2),則有y=4x1,① y=4x2,② 由①-②得(y1-y2)(y1+y2)=4(x1-x2), 得kBC==. 又∵=0,∴y1+y2=-2,∴kBC=-2. 又∵=1,∴x1+x2=2, ∴BC中點(diǎn)為(1,-1), 則BC所在直線(xiàn)方程為y+1=-2(x-1), 即2x+y-1=0. 答案:C 10.過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)F的直線(xiàn)交該拋物線(xiàn)于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為( ) A. B. C. D.2 解析:如圖,設(shè)A(x0,y0),不妨設(shè)y0<0,由拋物線(xiàn)方程y2=4x,可得拋物線(xiàn)焦點(diǎn)F(1,0),拋物線(xiàn)準(zhǔn)線(xiàn)方程為x=-1, 故|AF|=x0-(-1)=3, 可得x0=2,y0=-2,故A(2,-2),直線(xiàn)AB的斜率為k==-2,直線(xiàn)AB的方程為y=-2x+2, 聯(lián)立直線(xiàn)與拋物線(xiàn)方程,可得2x2-5x+2=0,得x=2或x=,所以B點(diǎn)的橫坐標(biāo)為,可得|BF|=-(-1)=,|AB|=|AF|+|BF|=3+=,O點(diǎn)到直線(xiàn)AB的距離為d=,所以S△AOB=|AB|d=. 答案:C 二、填空題 11.已知拋物線(xiàn)C:y=x2,則過(guò)拋物線(xiàn)焦點(diǎn)F且斜率為的直線(xiàn)l被拋物線(xiàn)截得的線(xiàn)段長(zhǎng)為_(kāi)_________. 解析:由題意得l的方程為y=x+1,即x=2(y-1). 代入拋物線(xiàn)方程得y=(y-1)2,即y2-3y+1=0. 設(shè)線(xiàn)段端點(diǎn)坐標(biāo)為(x1,y1),(x2,y2),則線(xiàn)段長(zhǎng)度為y1+y2+p=5. 答案:5 12.過(guò)拋物線(xiàn)y2=2x的焦點(diǎn)F作直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),若|AB|=,|AF|<|BF|,則|AF|=__________. 解析:設(shè)|AF|=x,|BF|=y(tǒng),由拋物線(xiàn)的性質(zhì)知+==2,又x+y=,∴x=,y=,即|AF|=. 答案: 13.已知P,Q為拋物線(xiàn)x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過(guò)P,Q分別作拋物線(xiàn)的切線(xiàn),兩切線(xiàn)交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為_(kāi)_________. 解析:y′=x,y′|x=4=4,y′|x=-2=-2,∵P(4,8),Q(-2,2),∴過(guò)P,Q的切線(xiàn)方程分別為:y=4x-8,y=-2x-2,聯(lián)立方程解得y=-4. 答案:-4 14.已知拋物線(xiàn)y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線(xiàn)-y2=1的左頂點(diǎn)為A,若雙曲線(xiàn)的一條漸近線(xiàn)與直線(xiàn)AM平行,則正實(shí)數(shù)a的值為_(kāi)_________. 解析:由拋物線(xiàn)的定義知1+=5,∴p=8,故m=4,又左頂點(diǎn)A(-a,0),M(1,4),因此直線(xiàn)AM的斜率為k==,解得a=. 答案: 三、解答題 15.已知拋物線(xiàn)y2=4x的焦點(diǎn)為F,直線(xiàn)l過(guò)點(diǎn)M(4,0). (1)若點(diǎn)F到直線(xiàn)l的距離為,求直線(xiàn)l的斜率; (2)設(shè)A,B為拋物線(xiàn)上兩點(diǎn),且AB不與x軸垂直,若線(xiàn)段AB的垂直平分線(xiàn)恰過(guò)點(diǎn)M,求證:線(xiàn)段AB中點(diǎn)的橫坐標(biāo)為定值. 解析:(1)由已知,x=4不合題意.設(shè)直線(xiàn)l的方程為y= k(x-4),由已知,拋 物線(xiàn)C的焦點(diǎn)坐標(biāo)為(1,0), 因?yàn)辄c(diǎn)F到直線(xiàn)l的距離為,所以=,解得k=±,所以直線(xiàn)l的斜率為±. (2)設(shè)線(xiàn)段AB中點(diǎn)的坐標(biāo)為N(x0,y0),A(x1,y1),B(x2,y2),因?yàn)锳B不垂直于x軸, 則直線(xiàn)MN的斜率為,直線(xiàn)AB的斜率為,直線(xiàn)AB的方程為y-y0=(x-x0). 由消去x整理得 y2-y0y+y+x0(x0-4)=0, ∴y1+y2=. ∵N為AB中點(diǎn),∴=y(tǒng)0,即=y(tǒng)0. ∴x0=2,即線(xiàn)段AB中點(diǎn)的橫坐標(biāo)為定值2. 答案:(1)±;(2)定值為2,證明略. 16.[xx·唐山市期末]已知拋物線(xiàn)E:x2=2py(p>0),直線(xiàn)y=kx+2與E交于A、B兩點(diǎn),且·=2,其中O為原點(diǎn). (1)求拋物線(xiàn)E的方程; (2)點(diǎn)C坐標(biāo)為(0,-2),記直線(xiàn)CA,CB的斜率分別為k1,k2,證明:k+k-2k2為定值. 解析:(1)將y=kx+2代入x2=2py,得x2-2pkx-4p=0. 其中Δ=4p2k2+16p>0, 設(shè)A(x1,y1),B(x2,y2),則 x1+x2=2pk,x1x2=-4p. ·=x1x2+y1y2=x1x2+·=-4p+4. 由已知,-4p+4=2,p=. 所以?huà)佄锞€(xiàn)E的方程x2=y(tǒng). (2)由(1)知,x1+x2=k,x1x2=-2. k1====x1-x2, 同理k2=x2-x1, 所以k+k-2k2=2(x1-x2)2-2(x1+x2)2 =-8x1x2=16. 答案:(1)x2=y(tǒng);(2)k+k-2k2=16,證明略. 創(chuàng)新試題 教師備選 教學(xué)積累 資源共享 1.[xx·湖北模擬]已知直線(xiàn)y=k(x-m)與拋物線(xiàn)y2=2px(p>0)交于A、B兩點(diǎn),且OA⊥OB,OD⊥AB于D.若動(dòng)點(diǎn)D的坐標(biāo)滿(mǎn)足方程x2+y2-4x=0,則m=( ) A.1 B.2 C.3 D.4 解析:設(shè)點(diǎn)D(a,b),則由OD⊥AB于D,得則b=-,a=-bk;又動(dòng)點(diǎn)D的坐標(biāo)滿(mǎn)足方程x2+y2-4x=0,即a2+b2-4a=0,將a=-bk代入上式,得b2k2+b2+4bk=0,即bk2+b+4k=0,--+4k=0,又k≠0,則(1+k2)(4-m)=0,因此m=4. 答案:D 2.[xx·鄭州模擬]如圖,過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)F的直線(xiàn)l交拋物線(xiàn)于點(diǎn)A、B,交其準(zhǔn)線(xiàn)于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線(xiàn)的方程為( ) A.y2=9x B.y2=6x C.y2=3x D.y2=x 解析:過(guò)點(diǎn)B作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為B1,記準(zhǔn)線(xiàn)與x軸的交點(diǎn)為F1,則依題意得==, 所以|BB1|=|FF1|=, 由拋物線(xiàn)的定義得|BF|=|BB1|=.過(guò)A,B作x軸的垂線(xiàn),垂足分別為D,E,由△BEF∽△ADF得=,解得p=.所以此拋物線(xiàn)的方程是y2=3x. 答案:C 3.[xx·烏魯木齊模擬]過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)F的直線(xiàn)交y軸于點(diǎn)A,拋物線(xiàn)上有一點(diǎn)B滿(mǎn)足=+ (O為坐標(biāo)原點(diǎn)),則△BOF的面積是__________. 解析:由題可知F(1,0),可設(shè)過(guò)焦點(diǎn)F的直線(xiàn)方程為y=k(x-1)(可知k存在),則A(0,-k), ∴B(1,-k),由點(diǎn)B在拋物線(xiàn)上,得k2=4,k=±2,即B(1,±2), S△BOF=·|OF|·|yB|=×1×2=1. 答案:1 4.[xx·廣州模擬]已知直線(xiàn)y=k(x-2)(k>0)與拋物線(xiàn)y2=8x相交于A,B兩點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),若|FA|=2|FB|,則k的值為_(kāi)_________. 解析:直線(xiàn)y=k(x-2)恰好經(jīng)過(guò)拋物線(xiàn)y2=8x的焦點(diǎn)F(2,0),由可得ky2-8y-16k=0,因?yàn)閨FA|=2|FB|,所以yA=-2yB,則yA+yB=-2yB+yB=,所以yB=-,yA·yB=-16,所以-2y=-16,即yB=±2,又k>0,故k=2. 答案:2 5.[xx·寧德檢測(cè)]已知拋物線(xiàn)y2=-4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l. (1)求經(jīng)過(guò)點(diǎn)F與直線(xiàn)l相切,且圓心在直線(xiàn)x+y-1=0上的圓的方程; (2)設(shè)過(guò)點(diǎn)F且不與坐標(biāo)軸垂直的直線(xiàn)交拋物線(xiàn)于A、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與x軸交于點(diǎn)M,求點(diǎn)M橫坐標(biāo)的取值范圍. 解析:(1)設(shè)圓心為(a,b),由拋物線(xiàn)y2=-4x得其焦點(diǎn)坐標(biāo)為(-1,0),準(zhǔn)線(xiàn)l的方程為x=1, 根據(jù)題意得 即解得 ∴所求圓的方程是(x+1)2+(y-2)2=4. (2)依題意可設(shè)直線(xiàn)AB的方程為x=my-1(m≠0),點(diǎn)A(x1,y1),B(x2,y2),AB的中點(diǎn)為P. 由消去x整理得y2+4my-4=0, ∴y1+y2=-4m,∴yP==-2m, ∴xP=myP-1=-2m2-1, 即線(xiàn)段AB的中點(diǎn)為P(-2m2-1,-2m), ∴線(xiàn)段AB的垂直平分線(xiàn)方程是 y+2m=-m(x+2m2+1), 令y=0,得xM=-3-2m2<-3, ∴點(diǎn)M橫坐標(biāo)的取值范圍是(-∞,-3). 答案:(1)(x+1)2+(y-2)2=4;(2)(-∞,-3).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué)一輪復(fù)習(xí) 10-7拋物線(xiàn)同步檢測(cè)2文 2019 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 10 拋物線(xiàn) 同步 檢測(cè)
鏈接地址:http://italysoccerbets.com/p-1981088.html