烏魯木齊堿溝煤礦0.9Mt新井設(shè)計(jì)【含CAD圖紙+文檔】
烏魯木齊堿溝煤礦0.9Mt新井設(shè)計(jì)【含CAD圖紙+文檔】,含CAD圖紙+文檔,烏魯木齊,煤礦,mt,設(shè)計(jì),cad,圖紙,文檔
翻
譯
部
分
英文原文
Combustion of Coal Mine Ventilation Air Methane in Thermal Reverse-flow Reactor
ZHENG Bin ,LIU Yong-qi ,LIU Rui-xiang
College of Traffic and Vehicle Engineering Shandong University of Technology Zibo City, China
Abstract: Combustion of coal mine ventilation air methane(VAM) was investigated in a thermal reverse-flow reactor.Effects of CH4 concentration, VAM flow and temperature were studied. The results show that combustion of coal mine ventilation air methane be achieved for methane concentration of 0.2%~0.8% in reactor. The conversion rates of CH4 are all above 99%.Some heat could be recovered. With the increase of CH4 concentration and VAM flow, the temperature of middle area increase, the volume of high temperature increase. It is to improve conversion rate of CH4. The lowest combustion temperature is 880 .
Keywords:coal mine ventilation air methane; thermal reverse-flow reactor; combustion; conversion rate
I. INTRODUCTION
Worldwide coal mine methane (CMM) emissions make up approximately 8% of the world’s anthropogenic methane emissions, the quantity of methane emissions from coal mining alone was over 25 million ton every year. Approximately 70% (90% in China) of methane emissions are from coal mine ventilation air methane (VAM). Ventilation air methane is not only a greenhouse gas but also a wasted energy resource if not utilized. The net calorific power of CH4 emission in VAM every year is equal to that of 33.7 million ton standard coal. As a greenhouse gas, CH4 is over 21 times more effective in trapping heat in the atmosphere than carbon dioxide over a 100-year period. CH4 (17%) is the second largest contributor to global warming after CO2 (55%). Thus recovering and utilizing CH4 properly in VAM is significant in both energy-saving and environment protection [1-4].
CH4 concentration in ventilation air methane is usually below 1%. The inflammability limit concentration of CH4 is 4.5%~15%. When the concentration is below 4.5%, it can’t be ignited or keep burning. So CH4 in VAM is hard to utilize. There are two main utilization techniques. One is CFRR. It employs catalyst to decrease the autoignition temperature of CH4 and makes CH4 oxidized. The reaction temperature is reduced in this technique, but catalyst is expensive and its reactive activity is greatly influenced by temperature. The processing is complex. The other is TFRR. The heat retainer is heated to the autoignition temperature of CH4 and CH4 is oxidized. The reaction temperature is a little higher in this technology, but the conversion rate of CH4 is higher. Simple making and low cost favors its large-scale implementation. Now only a few foreign scholars have made some study on
utilization [5-8]. Nearly no relevant studies have been published in china. Combustion of VAM was investigated in a thermal reverse-flow reactor and effects of operating parameters were studied in this paper.
II. EXPERIMENTS
The thermal reverse-flow reactor shown by Figure 1 consists of a combustion reactor, four valves and a heat output system. The body dimension of the combustion reactor is 2m×1m×1m. The inner part of reactor is honeycomb ceramics heat retainer and the inner surface of the reactor is ceramics fabric insulation, which makes heat dissipation from reactor surface impossible. An electric heater is in the middle of the reactor. Twelve thermocouples are laid on the reactor axis. The inner part of the two heat-exchangers is called middle area and four thermocouples are laid here. The outboard of the exchangers is called preheating area, and there are four temperature measuring points each. The temperature signals are transmitted a computer momentarily. The change of air flow is controlled by four solenoid valves, two forming a group. When valve group 1 opens, valve group 2 closes. The flow direction is from left to right. After a half cyclic period,
valve group 1 closes and valve group 2 opens. The direction is from right to left. It ensures symmetry of the temperature profile in reactor. The heat output system consists of a drum and two heat-exchangers which are fixed symmetrically.
Figure 1. Schematic diagram of the experimental apparatus (1-electric heater; 2-ceramic heat accumulator; 3-heater exchanger)
Operating process: The reactor is preheated by electric heater and when the temperature in the middle area is above 950 , VAM is added. VAM is rapidly combusted in the middle high temperature area. The heat of combustion is transferred to ceramics heat retainer and heat-exchanger. Simulated ventilation air methane is produced by natural gas and air. CH4 concentration of natural gas is 99.9%. CH4 concentration of simulated ventilation air methane (CCH4) is 0.2%~0.8%. The flow of simulated ventilation air methane (LVAM) is 90 m3·h-1~180 m3·h-1. The cyclic period (t) is 60s~180s
III. RESULTS ANDDISCUSSION
A. Temperature Profile Characteristics in Reactor
Fig.2 shows the temperature profile in thermal reverse-flow reactor of the two change direction times in one cyclic period. It is clear that the temperature profile is symmetrical, with
middle high and two ends low. The temperature of the middle area is higher and stable, which ensures combustion. The temperature of the two ends changes little, with no more than 20 difference. It shows the heat of flue gas loss is low and the heat of combustion is recovered. The temperature profile, orthokinetic changing with the flow direction, is always dynamic balance. Temperature is unstable in the edge of the middle area. The temperature difference could be as high as 450 ~500 . This is because the heat-exchangers are set in the edge of the middle area. The heat of combustion is transferred to heat exchangers.
Figure 3. Variations of combustion at various temperatures of middle area (experimental condition: LVAM=90 m3·h-1; t=90s)
Figure 4. Variations of temperature profile at various CH4 concentrations (experimental condition: LVAM=90 m3·h-1; t=120s)
If cyclic period time is too long, great amount of heat will is transferred to heat exchanger. This could cause the temperature in the middle area lower than the lowest temperature of combustion and then “flameout” will occur in reactor. Thus, it is important to choose proper cyclic period to ensure the combustion going stably. B. Effect of Temperature on Combustion Temperature is an important condition in the realization of VAM combustion [9]. Fig.3 shows variations of combustion at various temperatures of middle area. It is obvious that when the temperature is below 870 , the concentration of methane at the outlet is the same with that at the inlet. This shows that methane can’t be combusted at such temperature. When above 880 , the concentration of methane is nearly zero at the outlet, which that this temperature ensures the complete combustion of methane. The lowest temperature of combustion is 880 , and the concentration of methane has no effect on it.
Figure 5. Variations of saturation water temperature at various CH4 concentrations (experimental condition: LVAM=90 m3·h-1; t=120s)
TABLE I. CH4 CONVERSION RATE AT DIFFERENT REACTION CONDITIONS CH4
B. Effect of CH4 Concentration on Combustion
Fig.4 shows variations of temperature in reactor at various CH4 concentrations. It is clear that with the increase of concentration, the temperature in the middle area rises, the high temperature area becomes large and combustion area becomes wide, which favor combustion reaction. The temperature of the preheating areas changes little and the difference between temperature at inlet and outlet changes slightly, showing that flue gas loss hardly changes and that CH4 concentration variation has no effect on it. The extra heat of combustion with the increase of CH4 concentration is recovered totally by the heat output system. The higher the concentration is, the higher the temperature of saturation water in the drum, as is shown by Figure 5. When the concentration is 0.8%, the temperature of saturation water rises to 140 . The heat could be exported in the form of steam. When CH4 concentration is 0.2%, the temperature in the middle area is about 1000 , significantly higher than the lowest combustion temperature. The conversion rate of CH4 is 99.2% (Table ). It shows that almost total combustion of methane can be achieved, and the additional heat isn’t added in reactor. Combustion could be maintained at low concentration of CH4. Tab. shows CH4 conversion rate at different reaction conditions. It is obvious that when CH4 concentration is 0.2%~0.8%, the rates are all above 99%. It shows that at experimental conditions, VAM could maintain combustion reaction in reactor.
C. Effect of VAM Flow on Combustion
Fig.6 shows the variations of temperature profile at various VAM flows. It is clear that with the increase of VAM flow, the temperature in the middle area rises and the high temperature area becomes wide. When the flow rises to 180 m3·h-1 from 90 m3·h-1, the highest temperature rises by 50 . The reason is that the increase of VAM flow makes amount of CH4 combustion increase in one unit of time and more heat is released from the reaction. But the difference of temperature at inlet and that at outlet becomes high. With the increase of flow, the heat that is discharged increase. Flue gas loss increases. The difference between temperature at the inlet and that at the outlet could be reduced by choosing proper cyclic period and heat loss could be reduced at the same.
IV. CONCLUSIONS
When CH4 concentration is 0.2%, the temperature in the middle area is about 1000 . Almost total combustion of VAM can be achieved, and the additional heat isn’t added in reactor. CH4 conversion rate is as high as 99.2%. Temperature is an important condition. The lowest temperature of combustion reaction is 880 , and the concentration has no effect on it. Choosing proper cyclic period is important to maintain combustion reaction at low concentration. When CH4 concentration is 0.2%~0.8%, with the increase of CH4 concentration, the temperature rises in the middle area, the area of high temperature becomes large and combustion zone becomes wide, which favors combustion reaction. CH4 conversion rates are all above 99%. Heat of combustion could be recovered. When CH4 concentration is 0.8%, the temperature of saturation water in the drum can rise to 140 . With the increase of VAM flow, the temperature in the middle
area rises and the high temperature area becomes wide. But flue gas loss increase.
Thermal reverse-flow combustion technology is a better method to decrease the pollution of ventilation air methane, and recover heat.
ACKNOWLEDGMENT
This research was supported by Shandong Natural Science Foundation (No.Y2006F63) and Zibo Research Programme (No.20062502).
REFERENCES
[1] Aube F, and Sapoundjiev H, “Mathematical model and numerical
simulations of catalytic flow reversal reactors for industrial
applications,” Computers and Chemical Engineering, vol. 24, pp. 2623-
2632, April 2000.
[2] Matzos Y S, Noskov A S, and Chumachenko V A, “Theory and
application of unsteady-state catalytic detoxication of effluent gases
from sulfur dioxide, nitrogen oxides and organic compound,” Chem Eng
Sci,vol. 43, pp. 2061-2066, August 1988.
[3] Eigenberger G, and Nieken U, “Catalytic combustion with periodic flow
reversal,” Chem Eng Sci, vol. 43, pp. 2109-2115, August 1988.
[4] Matzos Y S, and Bunimovic G A, “Reverse-flow operation in fixed bed
catalytic reactors,” Catal Rev, vol. 38, pp. 1-8, January 1996.
[5] Salomons S, Haves R E, and Poirier M, “Flow reversal reactor for the
catalytic combustion of lean methane mixtures,” Catalysis Today, vol.
83, pp. 59-69, January 1996.
[6] Salomons S, Haves R E, and Poirier M, “Modeling a reverse flow
reactor for the catalytic combustion of fugitive methane emissions,”
Computers and Chemical Engineering, vol. 28, pp. 1599-1610,
September 2004.
[7] Cimino S, Pirone R, and Russo G, “Thermal stability of perpvskite-
based monolithic reactors in the catalytic combustion of methane,” Ind
Chem Res, vol. 40, pp. 80-85, January 2001.
[8] Chou CP, Chen JY, Evans GH, and Winters WS, “Numerical studies of
methane catalytic combustion inside a monolith honeycomb reactor
using multi-step surface reactions,” Combust Sci Technol, vol. 150, pp.
27-58, January 2000.
[9] Krzysztof, “Harnessing methane emissions from coal mining,” Process
Safety and Environment Protection, vol. 86, pp. 315-320, January 2008.
中文譯文
煤礦通風(fēng)瓦斯燃燒熱反向流式反應(yīng)器
鄭彬,劉永齊,劉瑞香
山東理工大學(xué), 學(xué)院交通與車輛工程,淄博市,中國
摘 要: 燃燒煤礦通風(fēng)瓦斯部(VAM)調(diào)查了一個(gè)熱反向流動(dòng)反應(yīng)器。甲烷濃度,通風(fēng)瓦斯流量和溫度影響進(jìn)行了研究。結(jié)果表明,煤礦燃燒實(shí)現(xiàn)通風(fēng)瓦斯的甲烷濃度0.2%?0.8%時(shí)在反應(yīng)器中。CH4的轉(zhuǎn)化率都高于 99%。有些熱可以回收。隨著甲烷增加濃度與菌根流,中部地區(qū)溫度增加,高溫度的增加量。這是提高甲烷轉(zhuǎn)化率。最低燃燒溫度為880。
關(guān)鍵詞:煤礦通風(fēng)瓦斯,熱反向流式反應(yīng)器;燃燒;轉(zhuǎn)化率
1 引言
全球煤礦瓦斯(CMM)的排放量彌補(bǔ)約8%的世界的人為甲烷排放量,排放的甲烷從煤礦數(shù)量單是在每年2500.00萬噸。約70%(中國90%)的甲烷排放量從煤礦通風(fēng)瓦斯部(VAM)。不通風(fēng)瓦斯只有一種溫室氣體,但也是一種浪費(fèi)能源資源,如果不利用。凈發(fā)熱功率VA菌根甲烷排放每一年等于三三七○○○○○噸標(biāo)準(zhǔn)煤的。隨著一種溫室氣體,甲烷是超過21倍的更有效的俘獲了一個(gè)比二氧化碳在大氣中的熱量100年。甲烷(17%)是第二大來源全球變暖后,二氧化碳(55%)。因此,回收和利用甲烷在VA菌根正確的意義,既節(jié)能保護(hù)環(huán)境[1-4]。
甲烷在通風(fēng)瓦斯?jié)舛纫话愕陀?%。易燃的甲烷濃度限制4.5%?15%。當(dāng)濃度低于4.5%,但不能點(diǎn)燃或保持燃燒。因此,在VA菌根甲烷很難加以利用。
有兩個(gè)主要的利用技術(shù)。一個(gè)是CFRR。這采用催化劑,以減少自燃溫度甲烷,使甲烷氧化。反應(yīng)溫度為能在這種技術(shù),但其價(jià)格昂貴,催化劑反應(yīng)活性受溫度影響較大。該處理是復(fù)雜的。另一種是TFRR。是固定的熱量加熱到甲烷和甲烷自燃溫度氧化。反應(yīng)溫度高一點(diǎn)點(diǎn)在這技術(shù),但甲烷的轉(zhuǎn)化率較高。簡單有利于決策和低成本的大規(guī)模實(shí)施?,F(xiàn)在只有少數(shù)外國學(xué)者的研究已經(jīng)取得了一些利用[5-8]。幾乎沒有相關(guān)研究已經(jīng)在中國出版。 VA菌根燃燒進(jìn)行了研究一熱反向流動(dòng)反應(yīng)器和經(jīng)營的影響參數(shù)進(jìn)行了研究這個(gè)文件。
2 實(shí)驗(yàn)
熱反向流式反應(yīng)器由圖1所示由燃燒反應(yīng)器,四個(gè)閥門和熱輸出系統(tǒng)。對(duì)燃燒器車身尺寸是2米× 1米× 1米。反應(yīng)器內(nèi)部是蜂窩狀陶瓷熱固和反應(yīng)器內(nèi)表面陶瓷織物絕緣,這使得反應(yīng)堆散熱表面是不可能的。電加熱器是在中間反應(yīng)堆。
圖2在反應(yīng)器溫度分布(實(shí)驗(yàn)條件:CCH4 0.4%; LVAM =90m3. h-1;t= 180s)
圖1示意圖實(shí)驗(yàn)裝置(1電
加熱器; 2陶瓷蓄熱器; 3熱交換器)
十二熱電偶是擺在反應(yīng)器軸。該兩個(gè)熱交換器內(nèi)的部分稱為中部地區(qū)和四熱電偶奠定這里。該舷外器被稱為預(yù)熱區(qū),并有四個(gè)每個(gè)測量點(diǎn)的溫度。溫度信號(hào)一臺(tái)計(jì)算機(jī)傳輸瞬間??諝獾淖兓髁靠刂?,由四個(gè)電磁閥,二成一小組。當(dāng)閥門開啟1組,2組閥門關(guān)閉。該流動(dòng)方向是從左至右。經(jīng)過一個(gè)半循環(huán)周期,閥門關(guān)閉,閥門組1組2打開。方向是由右至左。它確保了溫度的對(duì)稱性概況反應(yīng)堆。熱輸出系統(tǒng)包括一個(gè)鼓兩個(gè)熱交換器是固定對(duì)稱操作過程:反應(yīng)器是由電預(yù)熱加熱器時(shí),在中部地區(qū)溫度高950,VA菌根被添加。 VA菌根在迅速燃燒中高溫區(qū)。燃燒熱的是轉(zhuǎn)移到陶瓷熱固和換熱器。模擬通風(fēng)瓦斯是由自然燃?xì)夂涂諝狻L烊粴饧淄楹繛?9.9%。甲烷模擬通風(fēng)瓦斯?jié)舛龋–CH4)是0.2%?0.8%。對(duì)模擬通風(fēng)瓦斯流(LVAM)是90m3?H-1.循環(huán)周期(T)是60?180S。
3 結(jié)果與討論
A.溫度反應(yīng)堆剖面特征圖2顯示了在熱反向流溫度曲線這兩個(gè)反應(yīng)堆在一個(gè)循環(huán)周期的變化方向倍。很顯然,溫度曲線是對(duì)稱的與中間高,兩端低。它的中間溫度面積也越來越穩(wěn)定,保證燃燒。該兩端溫度變化不大,不超過20差異。它顯示了煙氣熱損失低燃燒熱的被回收。溫度曲線,或變化與水流方向,始終是
圖4溫度剖面分布在不同的甲烷濃度
(實(shí)驗(yàn)條件:LVAM =90m3. h-1;t= 120s)
圖3燃燒的變化在不同溫度下的中部地區(qū)(實(shí)驗(yàn)條件LVAM =90m3. h-1;t= 90s)
動(dòng)態(tài)的平衡。溫度是不穩(wěn)定的邊緣中部地區(qū)。溫度差異可以高達(dá)450?500。這是因?yàn)闊峤粨Q器載于在中部地區(qū)的邊緣。燃燒熱的是轉(zhuǎn)移到熱交換器。如果循環(huán)周期的時(shí)間太長,將大量的熱量傳送到熱交換器。這可能導(dǎo)致在中部地區(qū)比低的溫度燃的最低溫度,然后“熄火”會(huì)發(fā)生在反應(yīng)器。因此,重要的是要選擇適當(dāng)?shù)难h(huán)期,以確保持續(xù)穩(wěn)定的燃燒。
B 燃燒中溫度的影響
圖5飽和水溫度的變化在不同甲烷濃度(實(shí)驗(yàn)條件: LVAM =90m3. h-1;t= 120s)
溫度是實(shí)現(xiàn)VA菌根燃燒的重要條件[9]。圖3顯示了在燃燒變化不同溫度下的中部地區(qū)。很明顯,當(dāng)溫度低于870,甲烷濃度插座是用在進(jìn)口的相同。這表明,
甲烷燃燒不能在這樣的溫度。當(dāng)溫度在880以上時(shí),甲烷的濃度幾乎是在出口為零,那個(gè)這個(gè)溫度保證甲烷的完全燃燒。低溫燃燒是880,并且甲烷的集中沒有作用對(duì)此。
表1 甲烷轉(zhuǎn)化率的不同反應(yīng)條件
CH4濃度( %)
VAM流量 (m3. h-1)
循環(huán)周期(s)
CH4轉(zhuǎn)換率(%)
0.2
90
120
99.2
0.2
180
120
99.4
0.4
90
120
99.2
0.4
115
120
99.3
0.4
130
180
99.3
0.4
180
180
99.4
0.6
90
90
99.1
0.6
180
90
99.4
0.8
90
60
99.0
0.8
115
60
99.2
0.8
130
180
99.4
0.8
180
120
99.6
C.甲烷濃度對(duì)其燃燒的影響
圖4顯示了在各種溫度變化的反應(yīng)甲烷濃度。很顯然,隨著增加濃度,在中部地區(qū)的溫度升高,高溫區(qū)和燃燒面積變大變?yōu)閷挘欣谌紵磻?yīng)。對(duì)溫度預(yù)熱區(qū)變化不大,之間的差異在進(jìn)口和出口的溫度變化不大,顯示出煙氣損失難以甲烷濃度的變化,變化有沒有影響。多余的熱量的燃燒與甲烷濃度的增加是完全被收回?zé)彷敵鱿到y(tǒng)。濃度越高,越高在鼓溫度飽和水,所表現(xiàn)出圖5。當(dāng)濃度為0.8%時(shí),溫度水飽和度上升到140。熱可出口蒸汽的形式。當(dāng)甲烷濃度為0.2%,溫度在中部地區(qū)是1000左右,明顯高于高最低燃燒溫度。 CH4的轉(zhuǎn)化率99.2%(表1)。結(jié)果表明,幾乎完全燃燒甲烷可以實(shí)現(xiàn)的,而更多的熱量不添加反應(yīng)堆。燃燒可維持在低濃度甲烷。
D.顯示了甲烷轉(zhuǎn)化率在不同反應(yīng)條件。很明顯,當(dāng)甲烷濃度0.2%?0.8%,幅度也大于99%以上。它顯示,實(shí)驗(yàn)條件下,可以維持燃燒菌根在反應(yīng)器的反應(yīng)。四流的影響VA菌根對(duì)燃燒 圖5顯示了在各種溫度分布的變化VA菌根流動(dòng)。這是,隨著流量的增加VA菌根清晰,在中部地區(qū)溫度上升,高溫區(qū)變得寬。當(dāng)流量從90m3. h-1上升到180m3. h-1,最高溫度上升了50。原因是VA菌根流量的增加使得燃燒的甲烷數(shù)量在一個(gè)單位時(shí)間和增加更多的熱量釋放出來反應(yīng)。但是,在進(jìn)口和溫差,在出口變高。隨著流量的增加,熱量,排放的增加。煙氣損失增大。區(qū)別在進(jìn)口溫度之間,而且在出口可減少循環(huán)周期,并選擇適當(dāng)?shù)臒釗p失可能在同一減少。
4 結(jié)論
當(dāng)甲烷濃度為0.2%,溫度在中部地區(qū)約1000。幾乎完全燃燒VA菌根可以實(shí)現(xiàn)的,并沒有額外的熱核反應(yīng)堆內(nèi)添加。甲烷轉(zhuǎn)化率高達(dá)99.2%的高水平。溫度是 重要條件。燃燒的最低溫度反應(yīng)為880,而濃度沒有影響。選擇適當(dāng)?shù)难h(huán)周期是非常重要的維持燃燒反應(yīng)在低濃度。當(dāng)甲烷濃度為0.2%?0.8%,而增加 甲烷濃度,溫度上升,在中部地區(qū),在高溫和燃燒面積變大區(qū)變?yōu)閷?,這有利于燃燒反應(yīng)。甲烷轉(zhuǎn)換率超過99%以上。燃燒熱可收回。當(dāng)甲烷濃度為0.8%,飽和水溫可上升到140桶。隨著VA菌根流量的增加,在中溫面積上升,高溫區(qū)變得廣泛。但煙氣虧損增加。熱反向流動(dòng)燃燒技術(shù)是一種較好的方法以減少通風(fēng)瓦斯的污染,并回收熱量。
鳴謝
本研究是由山東省自然科學(xué)
基金會(huì)(No.Y2006F63)和淄博研究計(jì)劃 (No.20062502)。
參考文獻(xiàn)
[1]奧布F和Sapoundjiev小時(shí),“數(shù)學(xué)模型和數(shù)值流向變換催化反應(yīng)器模擬工業(yè)應(yīng)用,“計(jì)算機(jī)與化學(xué)工程,第一卷。 24日,第2623 - 2632,2000年4月。
[2] Matzos永生,Noskov一樣,弗吉尼亞州和Chumachenko,“理論與對(duì)非穩(wěn)態(tài)催化應(yīng)用解毒污水氣體
從二氧化硫,氮氧化物和有機(jī)物,“化學(xué)工程 科學(xué),第一卷。 43,第2061年至2066年,1988年8月。
[3] Eigenberger G和Nieken ü“,以定期流動(dòng)催化燃燒逆轉(zhuǎn),“化學(xué)工程科學(xué),第一卷。 43,第2109至2115年,1988年8月。
[4] Matzos渝生,和Bunimovic遺傳,“反向固定床流程運(yùn)作催化反應(yīng)器,“催化學(xué)報(bào)牧師,第一卷。 38,頁1-8,1996年1月。
[5] Salomons秒,富人RE和普瓦里耶男,“流為變換反應(yīng)器精益甲烷混合物催化燃燒,“催化今天,第一卷。83,頁59-69,1996年1月。
[6] Salomons秒,富人RE和普瓦里耶男,“反向流動(dòng)建模對(duì)于逃犯甲烷排放催化燃燒反應(yīng)器“計(jì)算機(jī)與化學(xué)工程,第一卷。 28日,第1599至1610年,2004年9月。
[7]西米諾秒,Pirone R和俄克,“perpvskite-的耐熱性在甲烷的催化作用的燃燒根據(jù)整體反應(yīng)器,“工業(yè)化學(xué)雜志,第一卷。 40,頁80-85,2001年1月。
[8]周處長,陳枝,埃文斯生長激素,冬天是“數(shù)值研究甲烷催化燃燒反應(yīng)器內(nèi)的一塊蜂窩采用多臺(tái)階面的反應(yīng),“燃燒器科學(xué)技術(shù),第一卷。 150頁 27-58,2000年1月。[9]克日什托夫:“從煤礦甲烷排放治理,”過程安全和環(huán)境保護(hù),第一卷。 86,第315-320,2008年1月。
11
收藏