蘇科版七年級上冊數(shù)學知識點概念.doc
《蘇科版七年級上冊數(shù)學知識點概念.doc》由會員分享,可在線閱讀,更多相關(guān)《蘇科版七年級上冊數(shù)學知識點概念.doc(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
______________________________________________________________________________________________________________ 蘇科版七年級上數(shù)學知識點歸納 正數(shù)和負數(shù) ⒈正數(shù)和負數(shù)的概念 負數(shù):比0小的數(shù) 正數(shù):比0大的數(shù) 0既不是正數(shù),也不是負數(shù) 注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,-a是負數(shù);當a表示負數(shù)時,-a是正數(shù);當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷) ②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。 2. 具有相反意義的量 若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如: 零上8℃表示為:+8℃;零下8℃表示為:-8℃ 3.0表示的意義 ⑴0表示“ 沒有”,如教室里有0個人,就是說教室里沒有人; ⑵0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如: 有理數(shù) 1. 有理數(shù)的概念 ⑴正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù)) ⑵正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù) ⑶正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。 理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。 注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像-2,-4,-6,-8…也是偶數(shù),-1,-3,-5…也是奇數(shù)。 2. 有理數(shù)的分類 ⑴按有理數(shù)的意義分類 ⑵按正、負來分 正整數(shù) 正整數(shù) 整數(shù) 0 正有理數(shù) 負整數(shù) 正分數(shù) 有理數(shù) 有理數(shù) 0 (0不能忽視) 正分數(shù) 負整數(shù) 分數(shù) 負有理數(shù) 負分數(shù) 負分數(shù) 總結(jié):①正整數(shù)、0統(tǒng)稱為非負整數(shù)(也叫自然數(shù)) ②負整數(shù)、0統(tǒng)稱為非正整數(shù) ③正有理數(shù)、0統(tǒng)稱為非負有理數(shù) ④負有理數(shù)、0統(tǒng)稱為非正有理數(shù) 數(shù)軸 ⒈數(shù)軸的概念 規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。 注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。 2.數(shù)軸上的點與有理數(shù)的關(guān)系 ⑴所有的有理數(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,0用原點表示。 ⑵所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應關(guān)系。(如,數(shù)軸上的點π不是有理數(shù)) 3.利用數(shù)軸表示兩數(shù)大小 ⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大; ⑵正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于負數(shù); ⑶兩個負數(shù)比較,距離原點遠的數(shù)比距離原點近的數(shù)小。 4.數(shù)軸上特殊的最大(?。?shù) ⑴最小的自然數(shù)是0,無最大的自然數(shù); ⑵最小的正整數(shù)是1,無最大的正整數(shù); ⑶最大的負整數(shù)是-1,無最小的負整數(shù) 5.a可以表示什么數(shù) ⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0; ⑵a<0表示a是負數(shù);反之,a是負數(shù),則a<0 ⑶a=0表示a是0;反之,a是0,,則a=0 6.數(shù)軸上點的移動規(guī)律 根據(jù)點的移動,向左移動幾個單位長度則減去幾,向右移動幾個單位長度則加上幾,從而得到所需的點的位置。 相反數(shù) ⒈相反數(shù) 只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。 注意:⑴相反數(shù)是成對出現(xiàn)的;⑵相反數(shù)只有符號不同,若一個為正,則另一個為負; ⑶0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。 2.相反數(shù)的性質(zhì)與判定 ⑴任何數(shù)都有相反數(shù),且只有一個; ⑵0的相反數(shù)是0; ⑶互為相反數(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0 3.相反數(shù)的幾何意義 在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應原點;原點表示0的相反數(shù)。 說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。 4.相反數(shù)的求法 ⑴求一個數(shù)的相反數(shù),只要在它的前面添上負號“-”即可求得(如:5的相反數(shù)是-5); ⑵求多個數(shù)的和或差的相反數(shù)是,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數(shù)是-(5a+b)。化簡得-5a-b); ⑶求前面帶“-”的單個數(shù),也應先用括號括起來再添“-”,然后化簡(如:-5的相反數(shù)是-(-5),化簡得5) 5.相反數(shù)的表示方法 ⑴一般地,數(shù)a 的相反數(shù)是-a ,其中a是任意有理數(shù),可以是正數(shù)、負數(shù)或0。 當a>0時,-a<0(正數(shù)的相反數(shù)是負數(shù)) 當a<0時,-a>0(負數(shù)的相反數(shù)是正數(shù)) 當a=0時,-a=0,(0的相反數(shù)是0) 6.多重符號的化簡 多重符號的化簡規(guī)律:“+”號的個數(shù)不影響化簡的結(jié)果,可以直接省略;“-”號的個數(shù)決定最后化簡結(jié)果;即:“-”的個數(shù)是奇數(shù)時,結(jié)果為負,“-”的個數(shù)是偶數(shù)時,結(jié)果為正。 絕對值 ⒈絕對值的幾何定義 一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作|a|。 2.絕對值的代數(shù)定義 ⑴一個正數(shù)的絕對值是它本身; ⑵一個負數(shù)的絕對值是它的相反數(shù); ⑶0的絕對值是0. 可用字母表示為: ①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。 可歸納為①:a≥0,<═> |a|=a (非負數(shù)的絕對值等于本身;絕對值等于本身的數(shù)是非負數(shù)。) ②a≤0,<═> |a|=-a (非正數(shù)的絕對值等于其相反數(shù);絕對值等于其相反數(shù)的數(shù)是非正數(shù)。) 3.絕對值的性質(zhì) 任何一個有理數(shù)的絕對值都是非負數(shù),也就是說絕對值具有非負性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對值是0;絕對值是0的數(shù)是0.即:a=0 <═> |a|=0; ⑵一個數(shù)的絕對值是非負數(shù),絕對值最小的數(shù)是0.即:|a|≥0; ⑶任何數(shù)的絕對值都不小于原數(shù)。即:|a|≥a; ⑷絕對值是相同正數(shù)的數(shù)有兩個,它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a; ⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|; ⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b; ⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。 (非負數(shù)的常用性質(zhì):若幾個非負數(shù)的和為0,則有且只有這幾個非負數(shù)同時為0) 4.有理數(shù)大小的比較 ⑴利用數(shù)軸比較兩個數(shù)的大小:數(shù)軸上的兩個數(shù)相比較,左邊的總比右邊的小; ⑵利用絕對值比較兩個負數(shù)的大?。簝蓚€負數(shù)比較大小,絕對值大的反而?。划愄杻蓴?shù)比較大小,正數(shù)大于負數(shù)。 5.絕對值的化簡 ①當a≥0時, |a|=a ; ②當a≤0時, |a|=-a 6.已知一個數(shù)的絕對值,求這個數(shù) 一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負數(shù)的數(shù)。 有理數(shù)的加減法 1.有理數(shù)的加法法則 ⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加; ⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值; ⑶互為相反數(shù)的兩數(shù)相加,和為零; ⑷一個數(shù)與零相加,仍得這個數(shù)。 2.有理數(shù)加法的運算律 ⑴加法交換律:a+b=b+a ⑵加法結(jié)合律:(a+b)+c=a+(b+c) 在運用運算律時,一定要根據(jù)需要靈活運用,以達到化簡的目的,通常有下列規(guī)律: ①互為相反數(shù)的兩個數(shù)先相加——“相反數(shù)結(jié)合法”; ②符號相同的兩個數(shù)先相加——“同號結(jié)合法”; ③分母相同的數(shù)先相加——“同分母結(jié)合法”; ④幾個數(shù)相加得到整數(shù),先相加——“湊整法”; ⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加——“同形結(jié)合法”。 3.加法性質(zhì) 一個數(shù)加正數(shù)后的和比原數(shù)大;加負數(shù)后的和比原數(shù)??;加0后的和等于原數(shù)。即: ⑴當b>0時,a+b>a ⑵當b<0時,a+b- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
32 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 蘇科版七 年級 上冊 數(shù)學 知識點 概念
鏈接地址:http://italysoccerbets.com/p-1583093.html