改進(jìn)設(shè)計(jì)與控制的水下電動(dòng)機(jī)械手的實(shí)驗(yàn)外文文獻(xiàn)翻譯、中英文翻譯
改進(jìn)設(shè)計(jì)與控制的水下電動(dòng)機(jī)械手的實(shí)驗(yàn)外文文獻(xiàn)翻譯、中英文翻譯,改進(jìn),改良,設(shè)計(jì),控制,節(jié)制,水下,電動(dòng),機(jī)械手,實(shí)驗(yàn),試驗(yàn),外文,文獻(xiàn),翻譯,中英文
改進(jìn)設(shè)計(jì)與控制的水下電動(dòng)機(jī)械手的實(shí)驗(yàn)
摘要:自動(dòng)半自動(dòng)水下工作機(jī)器人是水下機(jī)器人的一個(gè)發(fā)展趨勢(shì)。本文簡(jiǎn)要分析了水下電動(dòng)機(jī)械手作為水下自動(dòng)機(jī)器人的需要,并設(shè)計(jì)了三個(gè)功能的水下電動(dòng)試驗(yàn)臺(tái)。該試驗(yàn)臺(tái)具有結(jié)構(gòu)緊湊,功能齊全等特征。但是,外部電纜的布局增加了出現(xiàn)故障的可能性,尤其是當(dāng)機(jī)械手在水下工作時(shí)。對(duì)機(jī)器人內(nèi)部電纜布局的改進(jìn)設(shè)計(jì)也是本文要介紹的。
基于旋轉(zhuǎn)接頭驅(qū)動(dòng)模塊的頻率特性,該修正的目的是控制肩膀和肘關(guān)節(jié)的旋轉(zhuǎn)角速度。那么角度的誤差就被認(rèn)為是輸入角速率控制回路PID控制器和自適應(yīng)控制器產(chǎn)生的。這兩種控制器已經(jīng)被廣泛的用于水下控制當(dāng)中,而卻也是控制水下機(jī)械手的一種選擇性方法。實(shí)驗(yàn)結(jié)果表明PID和自適應(yīng)控制器在聯(lián)合控制的角度以及內(nèi)部控制回路中有良好的效果。非自適應(yīng)控制器比沒(méi)有內(nèi)循環(huán)的控制器更強(qiáng)大,這是一個(gè)比PID控制器更好的控制器,特別是在保護(hù)機(jī)器人避免汽車飽和電壓威脅的情況下。
關(guān)鍵詞:水下電動(dòng)機(jī)械手;自治水下機(jī)器人;自適應(yīng)控制器
1、 導(dǎo)言
近年來(lái),水下機(jī)器人成為研究界和工業(yè)界越來(lái)越感興趣的課題。在今天,使用載人水下機(jī)器人來(lái)完成水下工作任務(wù)已經(jīng)是一個(gè)非常普遍的現(xiàn)象。但是,在這樣危險(xiǎn)的環(huán)境中工作存在很大的風(fēng)險(xiǎn)。科學(xué)家們希望能夠在一個(gè)完全自主的方式下完成水下工作任務(wù)。因此,在這一領(lǐng)域的研究集中在了對(duì)于自主/半自治水下機(jī)械手系統(tǒng)的研究上。由于能源,電力和效率的因素,水下電動(dòng)機(jī)械手對(duì)于自主/半自主水下機(jī)器人系統(tǒng)是絕對(duì)必要的。水下電動(dòng)機(jī)械手的設(shè)計(jì)和控制之間的協(xié)調(diào)是要研究的重要內(nèi)容。舉例來(lái)說(shuō),斯坦福大學(xué)從1995年就開(kāi)始研究單鏈接機(jī)械手和水獺之間的相互關(guān)系。[ 1 ] , SAUVIMP [ 2 ]。現(xiàn)在一個(gè)半自主7自由度電動(dòng)機(jī)械手正在夏威夷自主系統(tǒng)實(shí)驗(yàn)室中研發(fā)。半自主水下機(jī)器人評(píng)價(jià)系統(tǒng)已在韓國(guó)海洋與發(fā)展研究所發(fā)展[ 3 ]。用于水下電動(dòng)機(jī)械手驅(qū)動(dòng)的磁鐵耦合配備已被九州技術(shù)學(xué)院與其他學(xué)院在設(shè)計(jì)[ 4 ] 。作為一個(gè)組成部分自主、半自主水下機(jī)器人系統(tǒng)的組成部分,中小型電動(dòng)機(jī)械手比液壓機(jī)械手更靈活方便,因此使用水下電動(dòng)機(jī)械手對(duì)海洋進(jìn)行探索的前景是非常好的。
本文提到的三功能水下電動(dòng)機(jī)械手設(shè)計(jì)試驗(yàn)臺(tái)配有自治區(qū),遙控車( SARV ),它是由中科院沈陽(yáng)自動(dòng)化研究所研究的試驗(yàn)臺(tái)。它是對(duì)水下機(jī)器人與遙控技術(shù)的評(píng)價(jià)的設(shè)備。在科學(xué)應(yīng)用中,選用輕纖維的,視覺(jué)的操作器模塊是一項(xiàng)重要的研究技術(shù)。
在本文中,我們首先給出設(shè)計(jì)機(jī)器人試驗(yàn)臺(tái),提出了一種改進(jìn)的旋轉(zhuǎn)式設(shè)計(jì)模塊。根據(jù)被測(cè)試的轉(zhuǎn)臺(tái)式模塊的頻率特征,提出了一種改進(jìn)的旋轉(zhuǎn)式設(shè)計(jì)模塊。我們采用PI控制器調(diào)節(jié)兩個(gè)關(guān)節(jié)的角速度,采用PID 與非自適應(yīng)控制器[ 5 ]來(lái)控制關(guān)節(jié)角度。關(guān)于控制器實(shí)驗(yàn)結(jié)果的分析在后面。
參考文獻(xiàn)
[1] F. Claugi, A. Robertsson, R. Johansson, "Output Feedback Adaptive Control of Robot Manipulators Using Observer Backstepping", Proceeding of the 2002 IEEE/RSJ Int. Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Oct. 2002, pp: 2091-2096
[2] C. Sousa, E. M. Hemerly, R. Kawakami, "Adative Control for Mobile Robot Using Wavelet Networks", IEEE Transaction on Systems, MAN, And Cybernetics- Part B: Cybernetics, Vol. 32, No. 4, Aug. 2002, pp: 493-
504
[3] B. K. Yoo, W. C. Ham, "Adaptive Control of Robot Manipulator Using Fuzzy Compensator", IEEE Transaction on Fuzzy Systems, Vol. 8., No. 2, April 2000, pp: 186-199
[4] J. K. Kim, M. C. Han, "Adaptive Robost Optimal the Predictive Control of Robot Manipulators", The 30Annual Conference of the Industrial Electronics Society, Nov. 2004, Busan, Korea, pp: 2819-2824
[5] M. J. Er, Y. Gao, "Robost Adaptive Control of Robot Manipulators Using Generalized Fuzzy Neural Networks", IEEE Transactions on Industrial Electronics, Vol. 50, No. 3, June 2003, pp: 620-628
[6] G. Ferreti, G. Magnani, P. Rocco, "On the stability of integral force control in case of contact with stiff surface", ASME, J. Dynamic Systems, Measurement, Control, Vol. 117, No. 4, 1995, pp: 547-553
[7] F. Khorrami, " Dynamical properties of manipulators exhibiting flexibilities", Proc. IEEE Conf. on Systems Engineering, Aug. 1990, pp:1-4
[8]S. Pannu, H. Kazerooni, G. Becker, A. Packard, "|ìsynthesis control for a walking robot", IEEE Control System Magazine, Vol. 16, No.1, Feb. 1996, pp: 20-25
[9] S. N. Nakaura, M. Sampei, "Balance control analysis of humanoid robot based on ZMP feedback control", Proceeding of the International Conf. on Intelligent Robots and System, Oct. 2002, pp: 2437-244
[10] I. M. Horowitz, "Synthesis of Feedback Systems", 1963, (New York: Academic Press).
[11] I. M. Horowitz, M. Sidi, "Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances", Int. J. Control, 16(2), 1972, pp: 287-309.
[12] S. N. Sheldon, S. J. Rasmussen, "Development and first successful flight test of a QFT flight control system", Int. Proc. IEEE National Aerospace and Electronics Conf., Dayton, Oh, 1994, pp: 629-636
[13] S. J. Rober, Y. C. Shin, O.D.I. Nwokah, "A digital robust controller for cutting force control in the end milling process", ASME, J. Dynamic Systems, Measurement, Control, Vol. 119, No. 2, 1997, pp: 146-152
[14] M. B. Leahy, D. E. Bossert, P. V. Whalen, "Robust model-based control:An experimental case study", Proc. IEEE Conf. on Robotics and Automation, Sacramento, CA, 1990, pp: 1982-1987
[15] A. Khodabakhshian, N. Golbon, "A new PID load frequency controller using QFT", IEEE ISIC-MED Conference Proceeding 2005, Limassol, Cyprus, 27-29 June, pp. 970-975
[16] A. Khodabakhshian, H. Rahimi, N. Golbon, "QFT Design for Load Frequency Control of Non-Minimum Phase Hydro Power Plant", IEEE-CCA Conference on Control Applications Procedding, 4-6 October, 2006, Munich, Germany, pp: 1380-1385
[17] T. C. Hsia, "System identification", Lexington, Massachuesetts, Toronto: D. C. Heath, 1977
[18] I. M. Horowitz, "Synthesis of feedback systems with non-linear time-varying uncertain plants to satisfy quantitative performance specifications", IEEE Proc., 64, 1976, pp: 123-130.
[19] W.H. Chen, D.J. Ballance, "QFT design for uncertain non-minimum phase and unstable plants revisited", Int. J. Control, 2001, Vol. 74, No. 9, pp: 957-965
[20] C. Borghesani, Y. Chait, O. Yaniv, "The QFT frequency domain control design toolbox for use with Matlab, user's guide", 2003
[21] Horowitz I. M., Sidi M., 'Optimum synthesis of non-minimum phase feedback system with plant uncertainty', 1978, Int. J. Control, vol.27,361-386.
收藏