錐齒輪的注塑模具設(shè)計(jì)【一模四腔】【說(shuō)明書(shū)+CAD】
購(gòu)買(mǎi)設(shè)計(jì)請(qǐng)充值后下載,資源目錄下的文件所見(jiàn)即所得,都可以點(diǎn)開(kāi)預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。具體請(qǐng)見(jiàn)文件預(yù)覽,有不明白之處,可咨詢(xún)QQ:12401814
錐齒輪的注塑模設(shè)計(jì)緒 論慕具是制造業(yè)的重要工藝基礎(chǔ),在我國(guó),模具制造屬于專(zhuān)用設(shè)備制造業(yè)。中國(guó)雖然很早就開(kāi)始制造模具和使用模具,但長(zhǎng)期未形成產(chǎn)業(yè)。直到20世紀(jì)80年代后期,中國(guó)模具工業(yè)才駛?cè)氚l(fā)展的快車(chē)道。近年,不僅國(guó)有模具企業(yè)有了很大發(fā)展,三資企業(yè)、鄉(xiāng)鎮(zhèn)(個(gè)體)模具企業(yè)的發(fā)展也相當(dāng)迅速。雖然中國(guó)模具工業(yè)發(fā)展迅速,但與需求相比,顯然供不應(yīng)求,其主要缺口集中于精密、大型、復(fù)雜、長(zhǎng)壽命模具領(lǐng)域。由于在模具精度、壽命、制造周期及生產(chǎn)能力等方面,中國(guó)與國(guó)際平均水平和發(fā)達(dá)國(guó)家仍有較大差距,因此,每年需要大量進(jìn)口模具。近年,模具行業(yè)結(jié)構(gòu)調(diào)整和體制改革步伐加大,主要表現(xiàn)在,大型、精密、復(fù)雜、長(zhǎng)壽命、中高檔模具及模具標(biāo)準(zhǔn)件發(fā)展速度高于一般模具產(chǎn)品;塑料模和壓鑄模比例增大;專(zhuān)業(yè)模具廠數(shù)量及其生產(chǎn)能力增加;“三資”及私營(yíng)企業(yè)發(fā)展迅速;股份制改造步伐加快等。從地區(qū)分布來(lái)看,以珠江三角洲和長(zhǎng)江三角洲為中心的東南沿海地區(qū)發(fā)展快于中西部地區(qū),南方的發(fā)展快于北方。目前發(fā)展最快、模具生產(chǎn)最為集中的省份是廣東和浙江,江蘇、上海、安徽和山東等地近幾年也有較大發(fā)展。1存在問(wèn)題和主要差距雖然我國(guó)模具總量目前已達(dá)到相當(dāng)規(guī)模,模具水平也有很大提高,但設(shè)計(jì)制造水平總體上落后于德、美、日、法、意等工業(yè)發(fā)達(dá)國(guó)家許多。當(dāng)前存在的問(wèn)題和差距主要表現(xiàn)在以下幾方面:總量供不應(yīng)求國(guó)內(nèi)模具自配率只有70%左右。其中低檔模具供過(guò)于求,中高檔模具自配率只有50%左右。企業(yè)組織結(jié)構(gòu)、產(chǎn)品結(jié)構(gòu)、技術(shù)結(jié)構(gòu)和進(jìn)出口結(jié)構(gòu)均不合理我國(guó)模具生產(chǎn)廠中多數(shù)是自產(chǎn)自配的工模具車(chē)間(分廠),自產(chǎn)自配比例高達(dá)60%左右,而國(guó)外模具超過(guò)70%屬商品模具。專(zhuān)業(yè)模具廠大多是“大而全”、“小而全”的組織形式,而國(guó)外大多是“小而專(zhuān)”、“小而精”。國(guó)內(nèi)大型、精密、復(fù)雜、長(zhǎng)壽命的模具占總量比例不足30%,而國(guó)外在50%以上。2004年,模具進(jìn)出口之比為3.71,進(jìn)出口相抵后的凈進(jìn)口額達(dá)13.2億美元,為世界模具凈進(jìn)口量最大的國(guó)家。模具產(chǎn)品水平大大低于國(guó)際水平,生產(chǎn)周期卻高于國(guó)際水平產(chǎn)品水平低主要表現(xiàn)在模具的精度、型腔表面粗糙度、壽命及結(jié)構(gòu)等方面。開(kāi)發(fā)能力較差,經(jīng)濟(jì)效益欠佳我國(guó)模具企業(yè)技術(shù)人員比例低,水平較低,且不重視產(chǎn)品開(kāi)發(fā),在市場(chǎng)中經(jīng)常處于被動(dòng)地位。我國(guó)每個(gè)模具職工平均年創(chuàng)造產(chǎn)值約合1萬(wàn)美元,國(guó)外模具工業(yè)發(fā)達(dá)國(guó)家大多是1520萬(wàn)美元,有的高達(dá)2530萬(wàn)美元,與之相對(duì)的是我國(guó)相當(dāng)一部分模具企業(yè)還沿用過(guò)去作坊式管理,真正實(shí)現(xiàn)現(xiàn)代化企業(yè)管理的企業(yè)較少。2造成上述差距的原因很多,除了歷史上模具作為產(chǎn)品長(zhǎng)期未得到應(yīng)有的重視,以及多數(shù)國(guó)有企業(yè)機(jī)制不能適應(yīng)市場(chǎng)經(jīng)濟(jì)之外,還有下列幾個(gè)原因:國(guó)家對(duì)模具工業(yè)的政策支持力度還不夠雖然國(guó)家已經(jīng)明確頒布了模具行業(yè)的產(chǎn)業(yè)政策,但配套政策少,執(zhí)行力度弱。目前享受模具產(chǎn)品增值稅的企業(yè)全國(guó)只有185家,大多數(shù)企業(yè)仍舊稅負(fù)過(guò)重。模具企業(yè)進(jìn)行技術(shù)改造引進(jìn)設(shè)備要繳納相當(dāng)數(shù)量的稅金,影響技術(shù)進(jìn)步,而且民營(yíng)企業(yè)貸款十分困難。人才嚴(yán)重不足,科研開(kāi)發(fā)及技術(shù)攻關(guān)投入太少模具行業(yè)是技術(shù)、資金、勞動(dòng)密集的產(chǎn)業(yè),隨著時(shí)代的進(jìn)步和技術(shù)的發(fā)展,掌握并且熟練運(yùn)用新技術(shù)的人才異常短缺,高級(jí)模具鉗工及企業(yè)管理人才也非常緊張。由于模具企業(yè)效益欠佳及對(duì)科研開(kāi)發(fā)和技術(shù)攻關(guān)重視不夠,科研單位和大專(zhuān)院校的眼睛盯著創(chuàng)收,導(dǎo)致模具行業(yè)在科研開(kāi)發(fā)和技術(shù)攻關(guān)方面投入太少,致使模具技術(shù)發(fā)展步伐不大,進(jìn)展不快工藝裝備水平低,且配套性不好,利用率低近年來(lái)我國(guó)機(jī)床行業(yè)進(jìn)步較快,已能提供比較成套的高精度加工設(shè)備,但與國(guó)外裝備相比,仍有較大差距。雖然國(guó)內(nèi)許多企業(yè)已引進(jìn)許多國(guó)外先進(jìn)設(shè)備,但總體的裝備水平比國(guó)外許多企業(yè)低很多。由于體制和資金等方面的原因,引進(jìn)設(shè)備不配套,設(shè)備與附件不配套現(xiàn)象十分普遍,設(shè)備利用率低的問(wèn)題長(zhǎng)期得不到較妥善的解決。專(zhuān)業(yè)化、標(biāo)準(zhǔn)化、商品化程度低,協(xié)作能力差由于長(zhǎng)期以來(lái)受“大而全”“小而全”影響,模具專(zhuān)業(yè)化水平低,專(zhuān)業(yè)分工不細(xì)致,商品化程度低。目前國(guó)內(nèi)每年生產(chǎn)的模具,商品模具只占40左右,其余為自產(chǎn)自用。模具企業(yè)之間協(xié)作不暢,難以完成較大規(guī)模的模具成套任務(wù)。模具標(biāo)準(zhǔn)化水平低,模具標(biāo)準(zhǔn)件使用覆蓋率低也對(duì)模具質(zhì)量、成本有較大影響,特別是對(duì)模具制造周期有很大影響。模具材料及模具相關(guān)技術(shù)落后模具材料性能、質(zhì)量和品種問(wèn)題往往會(huì)影響模具質(zhì)量、壽命及成本,國(guó)產(chǎn)模具鋼與國(guó)外進(jìn)口鋼材相比有較大差距。塑料、板材、設(shè)備性能差,也直接影響模具水平的提高。3發(fā)展展望目前,我國(guó)經(jīng)濟(jì)仍處于高速發(fā)展階段,國(guó)際上經(jīng)濟(jì)全球化發(fā)展趨勢(shì)日趨明顯,這為我國(guó)模具工業(yè)高速發(fā)展提供了良好的條件和機(jī)遇。一方面,國(guó)內(nèi)模具市場(chǎng)將繼續(xù)高速發(fā)展,另一方面,模具制造也逐漸向我國(guó)轉(zhuǎn)移以及跨國(guó)集團(tuán)到我國(guó)進(jìn)行模具采購(gòu)趨向也十分明顯。因此,放眼未來(lái),國(guó)際、國(guó)內(nèi)的模具市場(chǎng)總體發(fā)展趨勢(shì)前景看好,預(yù)計(jì)中國(guó)模具將在良好的市場(chǎng)環(huán)境下得到高速發(fā)展,我國(guó)不但會(huì)成為模具大國(guó),而且一定逐步向模具制造強(qiáng)國(guó)的行列邁進(jìn)?!笆晃濉逼陂g,中國(guó)模具工業(yè)水平不僅在量和質(zhì)的方面有很大提高,而且行業(yè)結(jié)構(gòu)、產(chǎn)品水平、開(kāi)發(fā)創(chuàng)新能力、企業(yè)的體制與機(jī)制以及技術(shù)進(jìn)步的方面也會(huì)取得較大發(fā)展。模具技術(shù)集合了機(jī)械、電子、化學(xué)、光學(xué)、材料、計(jì)算機(jī)、精密監(jiān)測(cè)和信息網(wǎng)絡(luò)等諸多學(xué)科,是一個(gè)綜合性多學(xué)科的系統(tǒng)工程。模具技術(shù)的發(fā)展趨勢(shì)主要是模具產(chǎn)品向著更大型、更精密、更復(fù)雜及更經(jīng)濟(jì)的方向發(fā)展,模具產(chǎn)品的技術(shù)含量不斷提高,模具制造周期不斷縮短,模具生產(chǎn)朝著信息化、無(wú)圖化、精細(xì)化、自動(dòng)化的方向發(fā)展,模具企業(yè)向著技術(shù)集成化、設(shè)備精良化、產(chǎn)批品牌化、管理信息化、經(jīng)營(yíng)國(guó)際化的方向發(fā)展。我國(guó)模具行業(yè)今后仍需提高的共性技術(shù)有:(1)建立在CAD/CAE平臺(tái)上的先進(jìn)模具設(shè)計(jì)技術(shù),提高模具設(shè)計(jì)的現(xiàn)代化、信息化、智能化、標(biāo)準(zhǔn)化水平(2)建立在CAM/CAPP基礎(chǔ)上的先進(jìn)模具加工技術(shù)與先進(jìn)制造技術(shù)相結(jié)合,提高模具加工的自動(dòng)化水平與生產(chǎn)效率。(3)模具生產(chǎn)企業(yè)的信息化管理技術(shù)。例如PDM(產(chǎn)品數(shù)據(jù)管理)、ERP(企業(yè)資源管理)、MIS(模具制造管理信息系統(tǒng))及INTERMET平臺(tái)等信息網(wǎng)絡(luò)技術(shù)的應(yīng)用、推廣及發(fā)展。(4)高速、高精、復(fù)合模具加工技術(shù)的研究與應(yīng)用。例如超精沖壓模具制造技術(shù)、精密塑料和壓鑄模具制造技術(shù)等。(5)提高模具生產(chǎn)效率、降低成本和縮短模具生產(chǎn)周期的各種快速經(jīng)濟(jì)模具制造技術(shù)。(6)先進(jìn)制造技術(shù)的應(yīng)用。例如熱流道技術(shù)、氣輔技術(shù)、虛擬技術(shù)、納米技術(shù)、高速掃描技術(shù)、逆向工程、并行工程等技術(shù)在模具研究、開(kāi)發(fā)、加工過(guò)程中的應(yīng)用。(7)原材料在模具中成形的仿真技術(shù)。(8)先進(jìn)的模具加工和專(zhuān)有設(shè)備的研究與開(kāi)發(fā)。(9)模具及模具標(biāo)準(zhǔn)件、重要輔件的標(biāo)準(zhǔn)化技術(shù)。(10)模具及其制品的檢測(cè)技術(shù)。(11)優(yōu)質(zhì)、新型模具材料的研究與開(kāi)發(fā)及其正確應(yīng)用。(12)模具生產(chǎn)企業(yè)的現(xiàn)代化管理技術(shù)。第1章 模塑工藝規(guī)程的編制1.1 塑件的工藝性分析塑件的工藝性分析包括塑件的原材料分析,塑件的尺寸精度分析,塑件的表面質(zhì)量和塑件的結(jié)構(gòu)工藝性分析,其具體分析如下。1.1.1 塑件的原材料分析表1 塑件的原材料分析5塑料品種結(jié)構(gòu)特點(diǎn)使用溫度化學(xué)穩(wěn)定性性能特點(diǎn)成型特點(diǎn)聚碳酸酯(pc),屬于熱塑性塑料線型結(jié)構(gòu)非結(jié)晶型材料,透明小于130,耐寒性好,脆化溫度位-100有一定的化學(xué)穩(wěn)定性,不耐堿、酮、酯等透光率較高,介電性能好,吸水性小,但水敏性強(qiáng)(含水量不得超過(guò)0.2%),且吸水后會(huì)降解力學(xué)性能很好,抗沖擊抗蠕變性能突出,但耐磨性較差熔融溫度高(超過(guò)330才嚴(yán)重分解),但熔體黏度大;流動(dòng)性差(溢邊值為0.06mm);流動(dòng)性對(duì)溫度變化敏感,冷卻速度快;成型收縮率??;易產(chǎn)生應(yīng)力集中 結(jié)論 熔融溫度高且熔體黏度大,應(yīng)嚴(yán)格控制模具溫度,一般在70120為宜,模具應(yīng)用耐磨剛,并淬火。 水敏性強(qiáng),加工前必須干燥處理,否則會(huì)出現(xiàn)銀絲、氣泡及強(qiáng)度顯著下降 易產(chǎn)生應(yīng)力集中,嚴(yán)格控制成型條件;塑件壁不宜厚,避免有尖角、缺口和金屬嵌件造成應(yīng)力集中,脫模斜度宜取21.1.2 塑件的尺寸精度分析該塑件的主要尺寸有其特定的要求,其余尺寸都為自由尺寸,按MT5查取公差,所以其精度不是很高,易成型,其主要尺寸公差標(biāo)注如下(單位均為mm): 塑件的外形尺寸:, 塑件的內(nèi)形尺寸:,1.1.3 塑件表面質(zhì)量分析與金屬零件一樣,塑件的表面質(zhì)量對(duì)它的使用性能是有影響的。塑件強(qiáng)度與它的表面粗糙度有直接關(guān)系。表面顯微不平的凹陷正是應(yīng)力集中處,且凹陷愈深,它的半徑愈小,則應(yīng)力集中就愈大,因此強(qiáng)度就愈差。另外粗糙度大的塑件表面的耐腐蝕就差些。由于錐齒輪在傳動(dòng)過(guò)程中防止過(guò)早失效,所以該塑件的外形粗糙度取Ra=0.4 ,而塑件內(nèi)部沒(méi)有較高的表面粗糙度要求。1.1.4 塑件的結(jié)構(gòu)工藝性分析從圖紙上分析:該塑件整體外形為回轉(zhuǎn)體,且符合最小壁厚要求,壁厚也較均勻。綜上所述,該塑件可采用注射成型加工。1.2 計(jì)算塑件體積和質(zhì)量1.2.1計(jì)算塑件的體積 V=2026.61mm(經(jīng)估算所得,過(guò)程略)1.2.2 計(jì)算塑件的質(zhì)量計(jì)算塑件的質(zhì)量是為了選擇注塑機(jī)及確定模具型腔數(shù),根據(jù)有關(guān)手冊(cè)查得:=1.2kg/dmPC的密度,所以塑件的質(zhì)量 M=v=1.2102026.61 =2.43 g根據(jù)塑件形狀及尺寸采用“一出四”,即一模四腔??紤]外形尺寸,對(duì)塑件原材料的分析以及注射所需的壓力情況,參考模具設(shè)計(jì)手冊(cè)初選螺桿式注射機(jī):XS-ZY-250。1.3 塑件模塑成型工藝參數(shù)的確定聚碳酸酯注射成型工藝參數(shù)見(jiàn)表 2 ,試模時(shí),可根據(jù)實(shí)際情況做適當(dāng)?shù)恼{(diào)整表2 聚碳酸酯注射成型工藝參數(shù)工藝參數(shù)規(guī)格工藝參數(shù)規(guī)格預(yù)熱和干燥溫度:110120成型時(shí)間/s注射時(shí)間2090時(shí)間:812 h保壓時(shí)間05料筒溫度t/ 后段210240冷卻時(shí)間2090中段230280總周期40190前段240285模具溫度t/70120噴嘴溫度t/240250注射壓力P/MPa80110第2章 注塑模的結(jié)構(gòu)設(shè)計(jì)注射模結(jié)構(gòu)設(shè)計(jì)主要包括:分型面的選擇,模具型腔數(shù)目的確定及型腔的排列,澆注系統(tǒng)的設(shè)計(jì),型芯、型腔結(jié)構(gòu)的確定,推件方式的確定。2.1 分型面的選擇 該塑件為錐齒輪,由于其使用性能要求,其外觀要求美觀,無(wú)斑點(diǎn)和熔接痕,表面質(zhì)量要求較高,并且齒輪的齒廓與孔的同軸度要求也比較高。根據(jù)分型面的選擇原則,分型面選在齒輪的最大截面A-A處,如圖2所示: 圖1 分型面的選擇這樣也有利于澆注系統(tǒng)的排列和模具的平衡。2.2 確定模具型腔數(shù)目及排列方式 由于該塑件采用的是一模四件成型,所以考慮到模具成型零件和出模方式的設(shè)計(jì),模具的型腔排列方式如下圖3所示:圖2型腔的排列2.3 確定澆注系統(tǒng)2.3.1 主流道設(shè)計(jì) 根據(jù)手冊(cè)查得XS-ZY-125型注射機(jī)噴嘴的有關(guān)尺寸: 噴嘴球半徑:R0=12mm 噴嘴孔直徑:d0=4mm 根據(jù)模具主流道與噴嘴的關(guān)系:R=R0+(12)mm,d=d0+0.5mm 取主流道球面半徑:R=14mm 取主流道的小端直徑:d=4.5mm為了便于將凝料從主流道中拔出,將主流道設(shè)計(jì)成圓錐形,其斜度為13。經(jīng)換算得主流道大端直徑D=12mm。同時(shí)為了使熔料順利進(jìn)入分流道,在主流道出料端設(shè)計(jì)r=5mm的圓弧過(guò)渡。主流道的尺寸直接影響到熔體的流動(dòng)速度和沖模時(shí)間。由于主流道要與高溫塑料熔體及主注射機(jī)噴嘴反復(fù)接觸,所以在注射模中主流道部分常設(shè)計(jì)成可拆卸更換的澆口套形式。主流道的長(zhǎng)度L一般按模板的厚度確定,一般控制在60mm以下。2.3.2 分流道的設(shè)計(jì) 分流道的形狀及尺寸與塑件的體積,壁厚,形狀的復(fù)雜程度,注射速率等因素有關(guān)。該塑件的體積不是很大,形狀不算太復(fù)雜,且壁厚較均勻。為了便于加工方面的考慮,采用截面形狀為半圓形的分流道。查有關(guān)手冊(cè)得R=6mm2.3.3 澆口設(shè)計(jì)A 澆口形式的選擇由于該塑件外觀質(zhì)量要求較高,澆口的位置和大小應(yīng)以不影響塑件的外觀質(zhì)量為前提。同時(shí),也應(yīng)盡量使模具結(jié)構(gòu)更簡(jiǎn)單,所以成型該塑件的模具采用點(diǎn)澆口的形式B 進(jìn)料位置的確定根據(jù)塑件外觀質(zhì)量的要求以及型腔的安放方式,進(jìn)料位置設(shè)計(jì)在塑件的底部。2.3.4 冷料穴的設(shè)計(jì) 冷料穴位于主流道政對(duì)面的動(dòng)模板上或者處于分流道的末端,其作用是收集熔體前鋒 的料,防止冷料進(jìn)入模具型腔而影響制品的質(zhì)量。冷料穴的長(zhǎng)度通常為流道直徑d的1.52.0倍。所以冷料穴長(zhǎng)度L=9mm。設(shè)置在熔體流動(dòng)方向的轉(zhuǎn)折位置,并迎著上游的熔體流向。其結(jié)構(gòu)如下圖4所示:圖3 冷料穴2.4 成型零件的結(jié)構(gòu)設(shè)計(jì)2.4.1 凹模的結(jié)構(gòu)設(shè)計(jì)由于塑件的形狀比較復(fù)雜,所以采用熱處理變形小的40Cr ,采用整體式。這樣便于加工和制造。2.4.2 凸模的結(jié)構(gòu)設(shè)計(jì) 考慮模具溫度調(diào)節(jié)系統(tǒng)的設(shè)置,型芯采用整體式結(jié)構(gòu),采用熱處理變形小的CrWMn。2.5 頂出機(jī)構(gòu)的設(shè)計(jì) 2.5.1 推件方式的選擇 根據(jù)塑件的形狀特點(diǎn),模具型腔在定模部分。開(kāi)模后,由于塑料的收縮,塑件包在型芯上留在動(dòng)模一側(cè),其推出機(jī)構(gòu)可采用推管推出或頂桿頂出。其中,推管推出結(jié)構(gòu)可靠,頂出力均勻,不影響塑件的外觀質(zhì)量,而由于錐齒輪的結(jié)構(gòu)所限,采用頂桿頂出,其頂桿無(wú)法放置。 從以上分析得出:該塑件采用推管推出機(jī)構(gòu)。并且從塑件圖上可知,其脫模行程不大,所以采用長(zhǎng)型芯的方式,即型芯緊固在模具底板上。而推管壁厚與塑件的壁厚一樣,由前面的可知其壁厚為3.5mm,在1.5mm以上。推管的材料與推桿一樣采用45#鋼,其滑動(dòng)長(zhǎng)度的淬火硬度為50HRC左右,表面粗糙度達(dá)Ra0.631.25m。其具體結(jié)構(gòu)及尺寸如附圖所示。2.5.2 復(fù)位裝置的選擇 由于該模采用的是推管脫模,在將塑件頂出后,必須返回其原始位置,才能合模進(jìn)行下一次的注塑成型。該模采用回程桿的方式來(lái)進(jìn)行推管的回復(fù)?;爻桃彩菢?biāo)準(zhǔn)件。只需買(mǎi)來(lái)即能使用。2.5.3 導(dǎo)向裝置的選擇 由于塑件的要求不是很高,所以不需設(shè)置設(shè)置導(dǎo)向裝置,用回程桿來(lái)進(jìn)行導(dǎo)向既可滿(mǎn)足要求。2.6 對(duì)合導(dǎo)向機(jī)構(gòu)的設(shè)計(jì) 對(duì)合導(dǎo)向機(jī)構(gòu)的功能三保證動(dòng)定模部分能夠準(zhǔn)確對(duì)合,使分別加工在動(dòng)模和定模上的成型表面在模具閉合后形成形狀和尺寸準(zhǔn)確的腔體,從而保證塑件形狀,壁厚和尺寸的準(zhǔn)確,該模具采用導(dǎo)柱對(duì)合導(dǎo)向機(jī)構(gòu)。導(dǎo)柱和型芯一起安裝在動(dòng)模一側(cè),這樣在合模時(shí)可起保護(hù)作用。 導(dǎo)柱,導(dǎo)套的結(jié)構(gòu)形式的選擇:導(dǎo)柱的結(jié)構(gòu)形式采用階梯形導(dǎo)柱,這樣當(dāng)導(dǎo)柱工作部分翹曲時(shí),容易從模板中卸下更換,采用4根直徑相同的導(dǎo)柱不對(duì)稱(chēng)的方式來(lái)進(jìn)行布置。而導(dǎo)套則采用有肩導(dǎo)套。 導(dǎo)柱和導(dǎo)套都是標(biāo)準(zhǔn)件,從外面買(mǎi)進(jìn)就可直接使用。2.7 點(diǎn)澆口凝料的脫出 由前面可知該模具采用點(diǎn)澆口,為了將澆注系統(tǒng)凝料取出,需要增加一個(gè)分型面。這種結(jié)構(gòu)的澆注系統(tǒng)凝料一般是人 工取出的,因此模具結(jié)構(gòu)簡(jiǎn)單,但是生產(chǎn)率低,勞動(dòng)強(qiáng)度大,只用于小批量生產(chǎn),為適應(yīng)自動(dòng)化的要求該模具采用側(cè)凹拉斷點(diǎn)澆口凝料的方法來(lái)取出澆注系統(tǒng)的凝料。其主要方法是在分流道盡頭鉆一斜孔(側(cè)凹8),開(kāi)模時(shí)由于斜孔內(nèi)冷凝塑料的限制,澆注系統(tǒng)凝料在澆口處與塑件拉斷,容后由于主流道冷料井的拉料桿(6)的作用,鉤住澆注系統(tǒng)凝料脫離澆口套,當(dāng)主流道完全退出澆口套后,在限位拉桿的作用下,拉動(dòng)定模板將澆注系統(tǒng)凝料從拉了桿中脫出。他們的結(jié)構(gòu)關(guān)如下圖5所示。 拉料桿采用帶10的圓形側(cè)凹的拉料桿,并且為了便于凝料的脫出,其與冷料穴的結(jié)構(gòu)如下圖4所示:圖4 澆注系統(tǒng)凝料的脫出1澆口套;2拉料桿;3上模座;4定模板;5動(dòng)模板;6型芯;7推管;8側(cè)凹2.8 確定排氣系統(tǒng)的形式:當(dāng)塑料填充型腔時(shí),必須排出澆注系統(tǒng)內(nèi)的空氣及塑料受熱產(chǎn)生的氣體,以保證塑件不會(huì)由于填充不足而出現(xiàn)氣泡、接縫或表面輪廓不清等缺點(diǎn);甚至氣體受壓力形成高溫使塑料焦化。但是此制件比較小采用分型面間隙排氣即可。第3章 模具設(shè)計(jì)的有關(guān)計(jì)算3.1 成型零件的尺寸計(jì)算 該塑件的成型零件尺寸均按平均值法計(jì)算。查有關(guān)手冊(cè)可知PC的收縮率為0.5%0.7%。故平均收縮率為SCP=(0.5+0.7)%/2=0.6%=0.006。根據(jù)塑件尺寸工差要求,模具的制造公差取=/43.1.1 型芯主要工作尺寸的計(jì)算 根據(jù)塑件圖可知型芯主要成型2個(gè)軸孔。其尺寸計(jì)算見(jiàn)表3表3型芯主要工作尺寸的計(jì)算已知條件:平均收縮率SCP=0.006mm;=/4;X-系數(shù),按表4.4-6查取1;為塑件公差類(lèi)別塑件尺寸(mm)計(jì)算公式型芯的工作尺寸(mm)型芯的計(jì)算 3.1.2 型腔主要工作尺寸的計(jì)算 根據(jù)塑件圖,型腔主要成型錐齒輪的齒廓以及齒輪的高度,型腔不僅要考慮在直徑方向上的收縮,還應(yīng)考慮在切向方向上齒厚上的收縮,但從上塑件圖上可知該齒輪較小,加工較困難,所以可以不考慮齒厚上的收縮。型腔的主要工作尺寸以齒頂圓錐為計(jì)算基準(zhǔn)。其主要工作尺寸見(jiàn)下表4:表4 型腔的主要工作尺寸的計(jì)算類(lèi)別塑件尺寸(mm)計(jì)算公式型芯的工作尺寸(mm)型腔的計(jì)算230.1422.970.043.2 型腔側(cè)壁厚度及底板厚度的計(jì)算 3.2.1 型腔側(cè)壁厚度的計(jì)算該模具型腔為整體式的圓形型腔,根據(jù)整體式圓形型腔側(cè)壁厚度計(jì)算公式 進(jìn)行計(jì)算。 =6.09mm 式中:-材料的許用應(yīng)力,=300N/mm2 -模腔壓力;=60MPa r-型腔內(nèi)孔的半徑 考慮到該型腔為整體式,為了便于制造取型腔側(cè)壁厚度為15mm。3.2.2 型腔底板厚度計(jì)算根據(jù)整體式型腔地板厚度計(jì)算公式進(jìn)行計(jì)算。 =8.13mm考慮模具的整體結(jié)構(gòu)的協(xié)調(diào)取,H=32mm。第4章 模具加熱與冷卻系統(tǒng)的計(jì)算注射模不僅是塑料熔體的成型設(shè)備,而且還是熱交換器,模溫調(diào)節(jié)系統(tǒng)直接關(guān)系塑件的質(zhì)量和生產(chǎn)效率,是注射模設(shè)計(jì)的核心內(nèi)容之一。在注射成型過(guò)程中,塑料熔體所釋放的熱量約有5%30%由模具傳導(dǎo),對(duì)流和輻射的方式散發(fā)到大氣中,熱量大部分由冷卻水帶走,模具的冷卻時(shí)間約占整個(gè)注射循環(huán)周期的2/3。 由于聚碳酸酯的熔融粘度高,流動(dòng)性差,所以需要較高的模溫,若模溫過(guò)低,則會(huì)影響塑料的流動(dòng)性,產(chǎn)生較大的流動(dòng)剪切力,使塑件的內(nèi)應(yīng)力較大,甚至?xí)霈F(xiàn)冷流痕,銀絲,注不滿(mǎn)等缺陷。所以需要對(duì)模具進(jìn)行加熱。該模具采用加熱中插入電加熱棒的加熱方法進(jìn)行對(duì)模具的加熱。4.1 加熱功率的計(jì)算根據(jù)電加熱功率計(jì)算的經(jīng)驗(yàn)公式:=89.325 =2232.5(W)式中:G-模具的重量,經(jīng)估算得G=89.3; q-為加熱單位重量模具至所需溫度的電功率,查表得q=25(w/)4.2 電加熱棒根數(shù)的計(jì)算及在模具上的布置考慮模板的尺寸,在該模具上布置4根電加熱棒,所以其功率的計(jì)算如下: =2232.5/4=558.125 (W) 所以選用4根25300mm的加熱棒。其位置見(jiàn)附圖。第5章 模具閉合高度的確定本塑件采用點(diǎn)澆口注射成型,根據(jù)結(jié)構(gòu)形式,選擇P1型。根據(jù)前面的計(jì)算,模架的周邊尺寸為315mm315mm導(dǎo)柱:32mm100mm40mm()GB/T 4196.5-1984導(dǎo)套:32mm32mmGB/T 4169.2-7984復(fù)位桿:在支撐與固定零件的設(shè)計(jì)中,根據(jù)經(jīng)驗(yàn)確定:定模座板:=40mm 定模板:=32mm 動(dòng)模板:=25mm 墊 塊:=80mm 凸模固定板:=20mm 動(dòng)模座板:=25mm所以模具的閉合高度: 第6章 注塑機(jī)有關(guān)參數(shù)校核6.1 模具安裝部分的校核該模具的外形尺寸為400mm355mm,XS-ZY-250型注射機(jī)模板最大安裝尺寸為598520,故能滿(mǎn)足模具安裝要求。由于XS-ZY-250型注射機(jī)所允許模具的最小厚度為=165mm,最大厚度=350mm。所以也滿(mǎn)足模具安裝要求。6.2 模具開(kāi)模行程的校核經(jīng)查資料注射機(jī)XS-ZY-250型的最大開(kāi)模行程S=350mm,滿(mǎn)足下式計(jì)算所需的出件要求: 所以,XS-ZY-250型注射機(jī)能滿(mǎn)足使用要求,故可以采用。第7章 繪制模具總裝圖和非標(biāo)準(zhǔn)零件工作圖本模具的總裝圖見(jiàn)裝配圖所示。非標(biāo)準(zhǔn)件圖見(jiàn)零件圖。本模具的工作原理:模具安裝在注塑機(jī)上,定模部分固定在注塑機(jī)的定模板上,動(dòng)模固定在注塑機(jī)的動(dòng)模板上。合模后,注塑機(jī)通過(guò)噴嘴將熔料經(jīng)流道注入型腔,經(jīng)保壓、冷卻后塑件成型。開(kāi)模時(shí)動(dòng)模部分隨動(dòng)模板一起運(yùn)動(dòng)漸漸將分型面打開(kāi),型芯隨動(dòng)模一起運(yùn)動(dòng),塑件依附在型芯上。型芯隨型芯固定板5運(yùn)動(dòng)一定距離后停止運(yùn)動(dòng),此時(shí)推件板20在注射機(jī)頂桿的驅(qū)動(dòng)下向前運(yùn)動(dòng)使塑件漸漸脫離型芯。合模時(shí),隨著分型面的逐漸閉合推動(dòng)復(fù)位桿恢復(fù)原位。第8章 模具的安裝與調(diào)試8.1模具的安裝裝配順序如下:(1) 裝配前按圖檢驗(yàn)主要工作零件及其他零件的尺寸。(2) 鏜導(dǎo)柱孔,將定模板7,動(dòng)模板5,定模座板8合在一起,使分模面緊密接觸并夾緊。鏜導(dǎo)柱孔,型孔,在空內(nèi)壓入工藝定位銷(xiāo)后,加工側(cè)面的垂直基準(zhǔn)。(3) 加工定模,用定模側(cè)面的垂直基準(zhǔn)確定定模7上型腔中心的實(shí)際位置,并以此作為加工基準(zhǔn),對(duì)其進(jìn)行電火花穿孔加工,將錐齒輪的四個(gè)型腔成型出來(lái),然后加工出澆口套孔以及四個(gè)拉料桿孔。(4) 加工動(dòng)模,按定模實(shí)際加工中心位置在動(dòng)模板5上加工出四個(gè)推管孔以及型腔,然后加工出四個(gè)復(fù)位桿孔。(5) 壓入導(dǎo)柱。在定模座板8,定模板7以及動(dòng)模板5上分別壓入導(dǎo)柱,并檢查其垂直度,使導(dǎo)向可靠,滑動(dòng)靈活。 (6) 裝配型芯。先將型芯固定板2,動(dòng)模板5,推桿固定板21以及推板22合攏,把型芯10放入推管9孔內(nèi),然后把推管9放入動(dòng)模板5的型控內(nèi),用螺孔復(fù)印法和壓銷(xiāo)釘套法使推管以及型芯緊固在型芯固定板2上。(7) 通過(guò)動(dòng)模板5引鉆推桿固定板上21的復(fù)位桿孔。(8) 組裝動(dòng)模座板1,型芯固定板2,墊塊以及動(dòng)模板5。(9) 在推桿固定板21和動(dòng)模板5上加工限位螺釘孔。(10) 定模和定模座板的裝配。用平行夾頭把它們夾緊,通過(guò)定模板7的孔引鉆在定模上,拆開(kāi)后,再定模上鉆,拉料桿孔,然后將定模7和定模座板8緊固。(11) 裝配動(dòng)模部分,修正推桿和復(fù)位桿長(zhǎng)度。(12) 完成裝配后進(jìn)行試模,并校驗(yàn)入庫(kù)。8.2 模具的調(diào)試:注射模裝配成以后。也要按正常的生產(chǎn)條件進(jìn)行試模,以了解模具的實(shí)際使用性能是否滿(mǎn)足生產(chǎn)要求、有無(wú)不完善的地方進(jìn)行改進(jìn)或作調(diào)整。通過(guò)試模塑件上常會(huì)出現(xiàn)各種弊病,為此必須進(jìn)行原因分析,排除故障。造成次廢品的原因很多,有時(shí)是單一的,但經(jīng)常是多個(gè)方面綜合的原因。需按成型條件,成型設(shè)備,模具結(jié)構(gòu)及制造精度,塑件結(jié)構(gòu)及形狀等因素逐個(gè)分析找出其中主要矛盾,然后再采取調(diào)節(jié)成型條件,修整模具等方法加以解決。首先,在初次試模中我們最常遇到的問(wèn)題是根本得不到完整的樣件。常因塑件被粘附于模腔內(nèi),或型芯上,甚至因流道粘著制品被損壞。這是試模首先應(yīng)當(dāng)解決的問(wèn)題。在試模過(guò)程中,應(yīng)做詳細(xì)記錄,并將結(jié)果填入試模記錄卡,注明模具是否合格。如需返修,則應(yīng)提出返修意見(jiàn)。在記錄卡中應(yīng)摘錄成型工藝條件及操作注意要點(diǎn),最好能附加上加工出的制件,以供參考。試模后,將模具清理干凈,涂上防銹漆,然后分別入庫(kù)和返修。設(shè)計(jì)總結(jié)畢業(yè)設(shè)計(jì)是一項(xiàng)非常繁雜的工作,它涉及的知識(shí)比較廣泛,很多都是我們所學(xué)課本上沒(méi)有的東西,這就要靠自己去圖書(shū)館查找自己所需要的資料;還有很多設(shè)計(jì)計(jì)算,這些都要靠自己運(yùn)用自己的思維能力去解決,可以說(shuō),完成這樣復(fù)雜的工作需要一定的毅力和耐心。在學(xué)校中,我們主要學(xué)的是理論性的知識(shí),而實(shí)踐性很欠缺,而畢業(yè)設(shè)計(jì)就相當(dāng)于實(shí)戰(zhàn)前的一次演練。通過(guò)畢業(yè)設(shè)計(jì)可是把我們以前學(xué)的專(zhuān)業(yè)知識(shí)系統(tǒng)的連貫起來(lái),使我們?cè)跍亓?xí)舊知識(shí)的同時(shí)也可以學(xué)習(xí)到很多新的知識(shí);這不但提高了我們解決問(wèn)題的能力,開(kāi)闊了我們的視野,在一定程度上彌補(bǔ)我們實(shí)踐經(jīng)驗(yàn)的不足,為以后的工作打下堅(jiān)實(shí)的基礎(chǔ)。本設(shè)計(jì)設(shè)計(jì)內(nèi)容為錐齒輪塑料模設(shè)計(jì),通過(guò)對(duì)錐齒輪的設(shè)計(jì),基本掌握了對(duì)塑料模設(shè)計(jì)的方法及步驟,對(duì)塑料模有了更進(jìn)一步的了解和認(rèn)識(shí),對(duì)模具的制造方法和制造途徑積累了一定的經(jīng)驗(yàn)。 由于水平有限,很多知識(shí)掌握的不是很牢固,因此在設(shè)計(jì)中難免要遇到很多難題,由于有了課程設(shè)計(jì)老師的不吝指導(dǎo)和同學(xué)的熱心幫助下,克服了一個(gè)又一個(gè)的困難,使我的畢業(yè)設(shè)計(jì)日趨完善。本設(shè)計(jì)中模板等尺寸也不代表一種最佳的選擇,例如模板的厚度,可以根據(jù)能取得的原料的厚度按最小的加工量選擇(要滿(mǎn)足最小厚度要求,同時(shí)也不能太厚太重)。同一塑件由不同的人設(shè)計(jì)有多種多樣的方案,最終都有可能很好的使用,通過(guò)這次設(shè)計(jì),我認(rèn)識(shí)到了除了正確掌握和應(yīng)用書(shū)本知識(shí)外,吸取他人的設(shè)計(jì)經(jīng)驗(yàn)也是非常重要的。致謝本設(shè)計(jì)在設(shè)計(jì)過(guò)程中得到了楊占堯、翟德梅、趙常海、原紅玲、于智宏等幾位指導(dǎo)老師的大力支持和幫助,再此表示誠(chéng)摯的感謝,由于本人水平有限,收集資料困難,如果有不盡人意的地方,懇請(qǐng)導(dǎo)師不吝賜教,提出寶貴改進(jìn)意見(jiàn)。參考文獻(xiàn)1 楊占堯主編. 塑料注塑模結(jié)構(gòu)與設(shè)計(jì). 清華大學(xué)出版社, 200042 翟德梅主編. 模具制造技術(shù). 20013 許發(fā)樾主編. 實(shí)用模具設(shè)計(jì)與制造手冊(cè). 機(jī)械工業(yè)出版社, 20004 陳錫棟 周小玉主編. 實(shí)用模具技術(shù)手冊(cè). 機(jī)械工業(yè)出版社, 20015 黃銳主編. 塑料工程手冊(cè). 機(jī)械工業(yè)出版社, 20006 賈潤(rùn)禮,程志遠(yuǎn)主編. 實(shí)用注塑模設(shè)計(jì)手冊(cè). 中國(guó)輕工業(yè)出版社, 20007 屈華昌主編. 塑料成型工藝與模具設(shè)計(jì). 北京高等教育出版社, 20018 陳萬(wàn)林主編. 實(shí)用注塑模設(shè)計(jì)與制造. 北京機(jī)械工業(yè)出版社, 20009 張克慧主編. 注塑模設(shè)計(jì). 西北工業(yè)大學(xué)出版社, 200110 馬金俊主編. 注塑模具設(shè)計(jì). 中國(guó)科學(xué)技術(shù)出版社, 1994第 23 頁(yè) 共 23 頁(yè)Microsystem Technologies 10 (2004) 531535 _ Springer-Verlag 2004DOI 10.1007/s00542-004-0387-2Replication of microlens arrays by injection moldingB.-K. Lee, D. S. Kim, T. H. KwonB.-K. Lee, D. S. Kim, T. H. Kwon (&)Department of Mechanical Engineering,Pohang University of Science and Technology (POSTECH),San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Koreae-mail: thkwonpostech.ac.krAbstract Injection molding could be used as a mass production technology for microlens arrays. It is of importance, and thus of our concern in the present study, to understand the injection molding processing condition effects on the replicability of microlens array profile. Extensive experiments were performed by varyingprocessing conditions such as flow rate, packing pressure and packing time for three different polymeric materials (PS, PMMA and PC). The nickel mold insert of microlens arrays was made by electroplating a microstructure master fabricated by a modified LIGA process. Effects of processing conditions on the replicability were investigated with the help of the surface profile measurements. Experimental results showed that a packing pressure and a flow rate significantly affects a final surface profile of the injection molded product. Atomic force microscope measurement indicated that the averaged surface roughness value of injection molded microlens arrays is smaller than that of mold insert and is comparable with that of fine optical components in practical use.1 Introduction Microoptical products such as microlenses or microlens arrays have been used widely in various fields of microoptics, optical data storages, bio-medical applications, display devices and so on. Microlenses and microlens arrays are essential elements not only for the practical applications but also for the fundamental studies in the microoptics. There have been several fabrication methods for microlenses or microlens arryas such as a modified LIGA process 1, photoresist reflow process 2, UV laser illumination 3, etc. And the replication techniques, such as injection molding, compression molding 4 and hot embossing 5, are getting more important for a mass production of microoptical products due to the cost-effectiveness. As long as the injection molding can replicate subtle microstructures well, it is surely the most cost-effective method in the mass production stage due to its excellent reproducibility and productivity. In this regard, it is of utmost importance to check the injection moldability and to determine the molding processing condition window for proper injection molding of microstructures. In this study, we investigated the effects of processing conditions on the replication of microlens arrays by the injection molding. The microlens arrays were fabricated by a modified LIGA process, which was previously reported in 6, 7. Injection molding experiments were performed with an electroplated nickel mold insert so as to investigate the effects of some processing conditions. The surface profiles of molded microlens arrays were measured, and were used to analyze effects of processing conditions. Finally, a surface roughness of microlens arrays was measured by an atomic force microscope (AFM).2 Mold insert fabricationMicrolens arrays having several different diameters were fabricated on a PMMA sheet by a modified LIGA process 6. This modified LIGA process is composed of an X-ray irradiation on the PMMA sheet and a subsequent thermal treatment. The X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens 7. The shapes of microlenses fabricated by the modified LIGA process can be predicted by a method suggested in 7. The microlens arrays used in the experiments were composed of 500m -(a 2 2 array), 300m -(2 2) and 200m (5 5) diameter arrays, and their heights were 20.81, 17.21 and 8.06 m, respectively. Using the microlens arrays fabricated by the modified LIGA process as a master, a metallic mold insert was fabricated by a nickel electroplating for the injection molding. Typical materials used in a microfabrication process, such as silicon, photoresists or polymeric materials, cannot be directly used as the mold or the mold insert due to their weak strength or thermal properties. It is desirable to use metallic materials which have appropriate mechanical and thermal properties to endure both a high pressure and a large temperature variation during the replication process. Therefore, a metallic mold insert is being used rather than the PMMA master on silicon wafer for mass production with such replication techniques. Otherwise special techniques should be adopted as a replication method, e.g. a low pressure injection molding 8.The size of final electroplated mold insert was 30 30 3 mm. The electroplated nickel mold insert having microlens arrays is shown in Fig. 1.Fig.1.Moldinsert fabricated by a nickel electroplating (a) Real view of the mold insert (b) SEM image of 200 m diameter microlens array (c) SEM image of 300 mdiameter microlens array3 Injection molding experimentsA conventional injection molding machine (Allrounders 220 M, Arburg) was used in the experiments. A mold base for the injection molding was designed to fix the electroplated nickel mold insert firmly with the help of a frametype bolster plate (Fig. 2). Shape of aperture of the bolster plate (in this study, a rectangular one) defines the outer geometry of the molded part on which the profiles of microlens arrays are to be transcribed. The mold base itself has delivery systems such as sprue, runner and gate which lead the molten polymer to the cavity formed by the bolster plate, the mold insert and amoving mold surface. The mold base was designed such that mold insert replacement is simple and easy. Of course, one may introduce an appropriate bolster plate with a specific aperture shape. Fig. 2. Mold base and mold insert used in the injection molding experimentThe injection molding experiments were carried out with three general polymeric materials PS (615APR, Dow Chemical), PMMA (IF870, LG MMA) and PC (Lexan 141R, GE Plastics). These materials are quite commonly used for optical applications. They have different refractive indices (1.600, 1.490 and 1.586 for PS, PMMA and PC, respectively), giving rise to different optical properties in final products, e.g. different foci with the same geometry. The injectionmolding experiments were performed for seven processing conditions by changing flow rate, packing pressure and packing time for each polymeric material. Furthermore, same experiments were repeated three times for checking the reproducibility. It may be mentioned that the mold temperature effect was not considered in this study since the temperature effect is relatively less important for these microlens arrays due to their large radius of curvature than other microstructures of high aspect ratio. For high aspect ratio microstructures, we are currently investigating the temperature effect more closely and plan to report separately in the future. Therefore, flow rate, packing pressure and packing time were varied to investigate their effects more thoroughly with the mold temperature unchanged in this study. Table 1 shows the detailed processing conditions for three polymeric materials. Other processing conditions were kept unchanged during the experiment. The mold temperatures were set to 80, 70 and 60 _C for PC, PMMA and PS, respectively.It might be mentioned that we carried out the experiments without a vacuum condition in the mold cavity considering that the large radius of curvature of the microlens arrays in the present study will not entrap air in the microlens cavity during the filling stage.Table 1. Detailed processing conditions used in the injection molding experimentsCaseFlow rate (cc/sec)Packing time (sec)Packing pressure(MPa)112.05.010.0212.05.015.0312.05.020.0PS412.02.010.0512.010.010.0618.05.010.0724.05.010.0PMMA16.010.010.026.010.015.036.010.020.046.05.010.05676.09.012.015.010.010.010.010.010.0PC 16.05.05.026.05.010.0356.06.09.05.010.015.05.065.05.0712.05.05.04Results and discussionBefore detailed discussion of the experimental results, it might be helpful to summarize why flow rate, packingpressure and packing time (which were chosen as processing conditions to be varied in this study) affect thereplication quality. As far as the flow rate is concerned, there may exist an optimal flow rate in the sense that too small flow rate makes too much cooling before a complete filling and thus possibly results in so-called short shot phenomena whereas too high flow rate increases pressure fields which is undesirable.The packing stage is generally required to compensate for the volume shrinkage of hot molten polymer whencooled down, so that enough material should flow into a mold cavity during this stage to control the dimensionalaccuracy. The higher the packing pressure, the longer the packing time, more material tends to flow in. However, too much packing pressure sometimes may cause uneven distribution of density, thereby resulting in poor opticalquality. And too long packing time does not help at all since gate will be frozen and prevent material from flowing into the cavity. In this regard, one needs to investigate the effects of packing pressure and packing time.4.1Surface profilesFigure 3 shows typical scanning electron microscope (SEM) images of the injection molded microlens arrays for different diameters for PMMA (a) and different materials (b). Cross-sectional surface profiles of the mold insert and all the injection molded microlens arrays were measured by a 3D profile measuring system (NH-3N, Mitaka).Fig. 3. SEM images of theinjection molded microlensarrays and microlenses (a)Injection molded microlensarrays (PMMA) (b) Injectionmolded microlenses of 300 mdiameter for different materialsAs a measure of replicability, we have defined a relative deviation of profile as the height difference between the molded one and the corresponding mold insert for each microlens divided by the mold insert one. The computed relative deviations for all the microlenses are listed in Table 2.Diameter ( m)Relative deviation (%)1234567PS200300500-7.625.862.38-7.592.03-0.382.082.860.51-5.611.47-8.6660161.47-11.444.291.47-5.731.95PMMA2003005007.205.77-0.661.315.60-1.62-3.886.453.98-5.805.952.80-0.975.95-0.72-8.536.68-0.904.86-2.62-0.72PC20030050023.026.20-0.9316.054.965.0916.872.66-1.8619.664.531.8833.974.786.9618.671.792.43-2.944.15-1.55It may be mentioned that the moldability of polymeric materials affects the replicability. Therefore, the overall relative deviation differs for three polymeric materials used in this study. It may be noted that PC is the most difficult material for injection molding amongst the three polymers. The largest relative deviation can be found in PC for the smallest diameter case, as expected. In that specific case, the largest value is corresponding to the low flow rate and low packing pressure. Packing time in this case does not significantly affect the deviation. The relative deviation for PS and PMMA with the smallest diameter is far better than PC case.Table 2 indicates that the larger the diameter, the smaller the relative deviation. The larger diameter microlens is, of course, easier to be filled than smaller diameter during the filling stage and packing stage. Microlenses of larger diameters were generally replicated well regardless of processing conditions and regardless of materials. The best replicability is found for the case of PS with 500 m diameter. Generally, PS has a good moldability in comparison with PMMA and PC.It may be mentioned that some negative values of relative deviation were observed mostly in the smallest diameter case for PS and PMMA according to Table 2. In these cases, however, the absolute deviation is an order of 0.1 m in height, which is within the measurement error of the system. Therefore, the negative values could be ignored in interpreting the experimental data of replicability. Surface profiles of microlens of 300 m diameter are shown in Figs. 4 and 5 for PC and PMMA, respectively. As shown in Fig. 4, the higher packing pressure or the higher flow rate results in the better replication of microlens for the case of PC, as mentioned above. Packing time has little effect on the replication for these cases. For the case of PMMA, the packing pressure and packing time have insignificant effect as shown in Fig. 5; however, flow rate has the similar effect to PC. It might be reminded that packing time does not affect the replicability if a gate is frozen since frozen gate prevents material from flowinginto the cavity. Therefore, the effect of packing time disappears after a certain time depending on the processing conditions.Fig.4ac(leftside).Surface profiles of microlens (PC with diameter (/) of 300 m). a effect of packing pressure, b effect of flow rate, c effectof packing timeFig.5ac.(rightside)Surface profiles of microlens (PMMA with diameter(/) of 300 m). a effect of packing pressure, b effect of flow rate,c effect of packing time4.2Surface roughnessAveraged surface roughness, Ra, values of 300 m diameter microlenses and the mold insert were measured by an atomic force microscope (Bioscope AFM, Digital Instruments). The measurements were performed around the top of each microlens and the measuring area was 5 m 5 m. Figure 6 shows AFM images and measured Ra values of microlenses. PMMA replicas of microlens have the lowest Ra value, 1.606 nm. It may be noted that AFM measurement indicated that Ra value of injection molded microlens arrays is smaller than the corresponding one of the mold insert. The reason for the improved surface roughness in the replicated microlens arrays is not clear at this moment, but might be attributed to the reflow caused by surface tension during a cooling process. It may be further noted that the Ra value of injection molded microlens arrays is comparable with that of fine optical components in practical use.Fig. 6. AFM images and averaged surface roughness, Ra, values of the mold insert and injection molded 300 m diameter microlenses. a Nickel mold insert, b PS, c PMMA, d PC4.3Focal lengthThe focal length of lenses can be calculated by a wellknown equation as follows:where f, nl, R1 and R2 are focal length, refractive index of lens material, two principal radii of curvature, respectively.For instance, focal lengths of the molded microlenses were approximately calculated as 1.065 mm (with R1 0.624 mm and R2 11 ¥) for 200 m diameter microlens, 1.130 mm (with R1= 0.662 mm and R2=) for 300 m microlens and 2.580 mm (with R1=1.512 mm and R2=) for 500 m microlens according to Eq. (1). These calculations were based on an assumption that microlenses are replicated with PC (nl= 1.586) and have the identical shape of the mold insert. It might be mentioned that the geometry of the molded microlens might be inversely deduced from an experimental measurement of the focal length.5ConclusionThe replication of microlens arrays was carried out by the injection molding process with the nickel mold insert which was electroplated from the microlens arrays master fabricated via a modified LIGA process.The effects of processing conditions were investigated through extensive experiments conducted with various processing conditions. The results showed that the higher packing pressure or the higher flow rate is, the better replicability is achieved. In comparison, the packing time was found to have little effect on the replication of microlens arrays.The injection molded microlens arrays had a smaller averaged surface roughness values than the mold insert, which might be attributed to the reflow induced by surface tension during the cooling stage. And PMMA replicas of microlens arrays had the best surface quality (i.e. the lowest roughness value of Ra =1.606 nm). The surface roughness of injection molded microlens arrays is comparable with that of fine optical components in practical use. In this regard, injection molding might be a useful manufacturing tool for mass production of microlensarrays.References1. Ruther P; Gerlach B; Gottert J; Ilie M; Muller A; Omann C (1997) Fabrication and characterization of microlenses realized by a modified LIGA process. Pure Appl Opt 6: 6436532. Popovic ZD; Sprague RA; Neville Connell GA (1988) Technique for monolithic fabrication of microlens array. Appl Opt27: 128112843. Beinhorn F; Ihlemann J; Luther K; Troe J (1999) Micro-lens arrays generated by UV laser irradiation of doped PMMA. Appl Phys A68: 7097134. Moon S; Lee N; Kang S (2003) Fabrication of a microlens array using micro-compression molding with an electroformed mold insert. J Micromech Microeng 13: 981035. Ong NS; Koh YH; Fu YQ (2002) Microlens array produced using hot embossing process. Microelectron Eng 60: 3653796. Lee S-K; Lee K-C; Lee SS (2002) A simple method for microlens fabrication by the modified LIGA process. J MicromechMicroeng 12: 3343407. Kim DS; Yang SS; Lee S-K; Kwon TH; Lee SS (2003) Physical modeling and analysis of microlens formation fabricated by a modified LIGA process. J Micromech Microeng 13: 5235318. Bauer W; Knitter R; Emde A; Bartelt G; Gohring D; Hansjosten E (2002) Replication techniques for ceramic microcomponents with high aspect ratio. Microsyst Technol 7: 85 90 微透鏡陣列注塑成型的復(fù)制 B.-K. Lee, D. S. Kim, T. H. Kwon樸航科技大學(xué)(POSTECH) 機(jī)械工程學(xué)院San 31, Hyoja-Dong, Nam-Gu, Pohang, 790-784, Korea電子郵箱l: thkwonpostech.ac.kr摘要 微透鏡陣列注塑成型,可作為一種非常重要的大量生產(chǎn)技術(shù)。因此我們?cè)诮鼇?lái)的研究中非常關(guān)注, 為了進(jìn)一步了解注塑成型在不同的加工條件下對(duì)可復(fù)制的微透鏡陣列剖面的影響,如流量、填料壓力和填料時(shí)間,對(duì)3種不同的高分子材料(PS,PMMA和PC)進(jìn)行了大量的試驗(yàn)。 鎳金屬模具嵌件微陣列就是利用改良的LIGA技術(shù)電鍍主裝配的顯微結(jié)構(gòu)制造的。在表面輪廓得到測(cè)量的前提下,研究工藝條件對(duì)可復(fù)制的微透鏡陣列的影響。實(shí)驗(yàn)結(jié)果表明, 填料壓力和流速對(duì)注射模塑的終產(chǎn)品的表面輪廓有重要的影響。 原子力顯微鏡測(cè)量表明, 微透鏡陣列注塑成型的平均表面粗糙度值小于模具嵌件成型, 并在實(shí)際運(yùn)用中,能與精細(xì)的光學(xué)元件相媲美。1 說(shuō)明 微型光學(xué)產(chǎn)品,如微透鏡或微透鏡陣列已廣泛應(yīng)用于光學(xué)數(shù)據(jù)存儲(chǔ)、生物醫(yī)學(xué)、顯示裝置等各個(gè)光學(xué)領(lǐng)域。微透鏡和微透鏡陣列不僅在實(shí)踐應(yīng)用上,而且在微型光學(xué)的基礎(chǔ)研究上都是非常重要的。有幾種微透鏡或微透鏡陣列的制作方法,如改良的LIGA技術(shù)1 ,光阻回流進(jìn)程2,紫外激光照射3等。還有復(fù)制技術(shù),如注塑模壓成型4和熱壓5技術(shù) ,這種方法對(duì)于減少大規(guī)模生產(chǎn)的微型光學(xué)產(chǎn)品的成本尤為重要。由于其優(yōu)越的生產(chǎn)和再生產(chǎn)能力,只要注塑成型過(guò)程中能很好的復(fù)制微觀結(jié)構(gòu),那么肯定是最適合于降低大量生產(chǎn)成本的方法。基于這點(diǎn),檢查注塑成型能力并確定成型加工條件是注塑成型微觀結(jié)構(gòu)過(guò)程中最重要的步驟。在本次研究中,我們考察了工藝條件對(duì)可復(fù)制的微透鏡陣列的注射成型的影響。微透鏡陣列是用之前介紹過(guò)6,7的改良的LIGA技術(shù)來(lái)編制的。注塑成型實(shí)驗(yàn)采用的是一種鍍鎳金屬模具,來(lái)探討了幾種不同工藝條件對(duì)成型的影響。通過(guò)對(duì)微透鏡陣列的表面輪廓測(cè)量,用來(lái)分析工藝條件產(chǎn)生的影響。最后,利用原子力顯微鏡(AFM)測(cè)量微透鏡的表面粗糙度值的大小。2 模具嵌件的制造利用改良的LIGA技術(shù)6,在一個(gè)有機(jī)玻璃板上制造出具有幾種不同直徑微透鏡陣列。此種技術(shù)是先用X光照射有機(jī)玻璃板,然后再進(jìn)行熱處理兩部分構(gòu)成的。X-射線照射引起有機(jī)玻璃分子質(zhì)量的減少,同時(shí)降低了玻璃化轉(zhuǎn)變溫度,并因此導(dǎo)致凈含量的增加,在熱循環(huán)的作用下,微透鏡發(fā)生微膨脹7。利用7中提出的方法,結(jié)合改良的LIGA技術(shù)可以預(yù)測(cè)微透鏡形狀的變化過(guò)程。 在試驗(yàn)中使用的微透鏡陣列,有500m (22陣列),300m (22)和200m (55)的直徑陣列,高分別是20.81m,17.21m和8.06m。采用改良的LIGA技術(shù)制造微透鏡陣列作為一個(gè)主要的技術(shù),用來(lái)制作鍍鎳的金屬模具的注塑成型。另一些特殊材料,因?yàn)樗鼈兊膹?qiáng)度不夠或熱性能差而不能直接進(jìn)行微細(xì)加工,當(dāng)作模具或金屬模具使用,如硅、光阻劑或高分子材料。盡量使用具有良好機(jī)械性能和熱性能的金屬材料,因?yàn)樗鼈兡茉诳蓮?fù)型加工過(guò)程中經(jīng)受高壓力和不斷變化的溫度。因此,為了利用這種復(fù)制技術(shù)進(jìn)行大批量生產(chǎn),我們選擇使用金屬模具材料而不是有機(jī)玻璃硅晶體。一些特殊技術(shù),如低壓注塑成型8技術(shù),應(yīng)該作為良好的復(fù)制加工方法被采納。電鍍模具的最終大小為30 mm30 mm3mm。鍍鎳金屬模具所具有的微透鏡陣列如圖1所示。圖1 鍍鎳模具嵌件的制造 (a)直接觀察;(b)直徑為200m的微透鏡陣列電子顯微鏡圖像;(c)直徑為300m的微透鏡陣列電子顯微鏡圖像3 注塑成型實(shí)驗(yàn) 傳統(tǒng)注塑機(jī)(Allrounders 220 M,Arburg)多用做實(shí)驗(yàn)機(jī)。注塑模具設(shè)計(jì)的模架就是利用一塊框形支撐板固定鍍鎳模具(如圖2所示)。
收藏