高中數(shù)學(xué) 第一章 統(tǒng)計(jì) 8 最小二乘估計(jì)學(xué)案 北師大版必修31
《高中數(shù)學(xué) 第一章 統(tǒng)計(jì) 8 最小二乘估計(jì)學(xué)案 北師大版必修31》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第一章 統(tǒng)計(jì) 8 最小二乘估計(jì)學(xué)案 北師大版必修31(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
8 最小二乘估計(jì) 1.了解最小二乘法的思想. 2.能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程. 最小二乘法 求線性回歸直線方程y=bx+a時(shí),使得樣本數(shù)據(jù)的點(diǎn)到它的__________最小的方法叫做最小二乘法.其中a,b的值由以下公式給出: a,b是線性回歸方程的系數(shù). 線性回歸分析涉及大量的計(jì)算,形成操作上的一個(gè)難點(diǎn),可以利用計(jì)算機(jī)非常方便地作散點(diǎn)圖、回歸直線,并能求出回歸直線方程.因此在學(xué)習(xí)過(guò)程中,要重視信息技術(shù)的應(yīng)用. 【做一做】已知某工廠在某年里每月生產(chǎn)產(chǎn)品的總成本y(萬(wàn)元)與該月產(chǎn)量x(萬(wàn)件)之間的回歸直線方程為y=0.974+1.215x,計(jì)算x=2時(shí),總成本y的估計(jì)值為_(kāi)_____. 什么是最小二乘法? 剖析:結(jié)合最小二乘法的發(fā)展過(guò)程和在實(shí)際生活中的應(yīng)用來(lái)了解最小二乘法.最小二乘法的思想是通過(guò)最小化誤差的平方和找到一組數(shù)據(jù)的最佳函數(shù)匹配,是用最簡(jiǎn)單的方法求得一些絕對(duì)不可知的真值,而令誤差平方之和為最小,是處理各種觀測(cè)數(shù)據(jù),測(cè)量方差的一種基本方法,是一種數(shù)學(xué)優(yōu)化技術(shù).在統(tǒng)計(jì)中,主要是利用最小二乘法求線性回歸方程,這是最小二乘法思想的應(yīng)用.最小二乘法不僅是數(shù)理統(tǒng)計(jì)中一種常用的方法,在工業(yè)技術(shù)和其他科學(xué)研究中也有廣泛應(yīng)用,比如洪水實(shí)時(shí)預(yù)報(bào)等等. 題型一 閱讀理解題 【例題1】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下統(tǒng)計(jì)資料: x 2 3 4 5 6 y 2.2 3.8 5.5 6.5 7.0 若由資料知,y與x線性相關(guān). (1)求回歸直線方程y=bx+a中a與b的值; (2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少? 分析:先求出回歸直線方程,若回歸直線方程為y=bx+a,則在x=x0處的估計(jì)值為y0=bx0+a. 反思:知道x與y線性相關(guān),就無(wú)需進(jìn)行相關(guān)性檢驗(yàn),否則,應(yīng)先進(jìn)行相關(guān)性檢驗(yàn),若兩個(gè)變量不具備相關(guān)關(guān)系,或者說(shuō),它們之間的線性相關(guān)關(guān)系不顯著,即使求出回歸直線方程也是毫無(wú)意義的,而且用其估計(jì)和預(yù)測(cè)的量也是不可信的. 題型二信息提煉題 【例題2】某產(chǎn)品的原料中兩種有效成分A和B的含量如下表所示: 1 2 3 4 5 6 7 8 9 10 A(%) 24 15 23 19 16 11 20 16 17 13 B(%) 67 54 72 64 39 22 58 43 46 34 用x(%)表示A的含量,y(%)表示B的含量. (1)作出散點(diǎn)圖; (2)y與x是否線性相關(guān)?若線性相關(guān),求出回歸直線方程(結(jié)果保留到小數(shù)點(diǎn)后4位小數(shù)). 分析:作出散點(diǎn)圖,可判斷y與x是否線性相關(guān),如果線性相關(guān),可用計(jì)算器求a,b的值. 反思:求回歸直線方程,通常是用計(jì)算器來(lái)完成的.在有的科學(xué)計(jì)算器中,可通過(guò)直接按鍵得出回歸直線方程中的a,b.如果用一般的計(jì)算器進(jìn)行計(jì)算,則要先列出相應(yīng)的表格,有了表格中的相關(guān)數(shù)據(jù),回歸直線方程中的a,b就容易求出來(lái)了. 題型三 線性回歸分析的應(yīng)用 【例題3】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù): x 3 4 5 6 y 2.5 3 4 4.5 (1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖; (2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a; (3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤? (參考數(shù)值:32.5+43+54+64.5=66.5) 分析:(1)以產(chǎn)量為橫坐標(biāo),以生產(chǎn)能耗對(duì)應(yīng)的測(cè)量值為縱坐標(biāo)在平面直角坐標(biāo)系內(nèi)畫(huà)散點(diǎn)圖;(2)應(yīng)用計(jì)算公式求得線性相關(guān)系數(shù)b,a的值;(3)實(shí)際上就是求當(dāng)x=100時(shí),對(duì)應(yīng)的y的值. 反思:求線性回歸直線方程的步驟如下: ①列表表示xi,yi,xiyi; ②計(jì)算,,,iyi; ③代入公式計(jì)算b,a的值; ④寫(xiě)出線性回歸方程. 可以利用線性回歸方程進(jìn)行預(yù)測(cè)變量的值. 1某商品銷(xiāo)售量y(件)與銷(xiāo)售價(jià)格x(元/件)負(fù)相關(guān),則其回歸方程可能是( ). A.y=-10x+200 B.y=10x+200 C.y=-10x-200 D.y=10x-200 2下表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的回歸直線必過(guò)點(diǎn)( ). x 0 1 2 3 y 1 3 5 7 A.(2,2) B.(1.5,2) C.(1,2) D.(1.5,4) 3對(duì)有線性相關(guān)關(guān)系的兩個(gè)變量建立的回歸直線方程y=a+bx中,回歸系數(shù)b( ). A.小于0 B.大于0 C.等于0 D.以上都有可能 4給出下列說(shuō)法:①回歸方程適用于一切樣本和總體; ②回歸方程一般都有局限性; ③樣本取值的范圍會(huì)影響回歸方程的適用范圍; ④回歸方程得到的預(yù)測(cè)值是預(yù)測(cè)變量的精確值. 其中正確的是________(將你認(rèn)為正確的序號(hào)都填上). 5某個(gè)服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲純利潤(rùn)y(元)與該周每天銷(xiāo)售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系見(jiàn)下表: x 3 4 5 6 7 8 9 y 66 69 73 81 89 90 91 已知:,, (1)求,; (2)畫(huà)出散點(diǎn)圖; (3)求純利潤(rùn)y與每天銷(xiāo)售件數(shù)x之間的回歸直線方程. 答案: 基礎(chǔ)知識(shí)梳理 距離的平方和 ?。璪 【做一做】3.404 由回歸直線方程y=0.974+1.215x得,當(dāng)x=2時(shí),總成本y的估計(jì)值為y=0.974+1.2152=3.404. 典型例題領(lǐng)悟 【例題1】解:(1)列表: i 1 2 3 4 5 xi 2 3 4 5 6 yi 2.2 3.8 5.5 6.5 7.0 xiyi 4.4 11.4 22.0 32.5 42.0 =4,=5 xi2=90,xiyi=112.3 其中,b====1.23,a=-b=5-1.234=0.08.所以a=0.08,b=1.23. (2)回歸直線方程為y=1.23x+0.08.當(dāng)x=10時(shí),y=1.2310+0.08=12.38,即使用年限為10年時(shí),維修費(fèi)用約為12.38萬(wàn)元. 【例題2】解:(1)散點(diǎn)圖如圖所示. (2)因?yàn)樯Ⅻc(diǎn)圖中各點(diǎn)大致都分布在一條直線附近,所以y與x之間存在線性相關(guān)關(guān)系.經(jīng)計(jì)算可得=17.4,=49.9,x=3 182,xiyi=9 228,故b==≈3.532 38≈3.532 4,a=-b≈49.9-3.532 3817.4≈-11.563 4,所以所求回歸直線方程為y=3.532 4x-11.563 4. 【例題3】解:(1)散點(diǎn)圖如圖所示. (2)由題意,得xiyi=32.5+43+54+64.5=66.5, ==4.5, ==3.5, x=32+42+52+62=86, ∴b===0.7, a=-b=3.5-0.74.5=0.35. 故線性回歸方程為y=0.7x+0.35. (3)根據(jù)回歸方程可預(yù)測(cè),現(xiàn)在生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗為0.7100+0.35=70.35(噸標(biāo)準(zhǔn)煤), 故預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前減少了90-70.35=19.65(噸標(biāo)準(zhǔn)煤). 隨堂練習(xí)鞏固 1.A ∵商品銷(xiāo)售量y(件)與銷(xiāo)售價(jià)格x(元/件)負(fù)相關(guān), ∴b<0,排除選項(xiàng)B,D. 又∵x=0時(shí),y>0, ∴答案為A. 2.D 回歸直線方程必過(guò)中心點(diǎn)(,),即(1.5,4),故選D. 3.D 4.②③ 樣本或總體具有線性相關(guān)關(guān)系時(shí),才可求回歸方程,而且由回歸方程得到的函數(shù)值是近似值,而非精確值,因此回歸方程有一定的局限性.所以①④錯(cuò). 5.解:(1)==6(件), ==≈79.86(元). (2)散點(diǎn)圖如下: (3)由散點(diǎn)圖知,y與x有線性相關(guān)關(guān)系. 設(shè)回歸直線方程為y=bx+a. 由x=280,xiyi=3 487,=6,=,得 b===4.75, a=-64.75≈51.36, 故回歸直線方程為y=4.75x+51.36.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第一章 統(tǒng)計(jì) 最小二乘估計(jì)學(xué)案 北師大版必修31 最小 估計(jì) 北師大 必修 31
鏈接地址:http://italysoccerbets.com/p-11972648.html