購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
南 京 理 工 大 學
畢業(yè)設計(論文)開題報告
學 生 姓 名:
周榮江
學 號:
060104231
專 業(yè):
機械工程及自動化
設計(論文)題目:
小型輪式移動機器人結構設計與運動
控制研究
指 導 教 師:
祖莉
2010 年 3 月 19 日
開題報告填寫要求
1.開題報告(含“文獻綜述”)作為畢業(yè)設計(論文)答辯委員會對學生答辯資格審查的依據(jù)材料之一。此報告應在指導教師指導下,由學生在畢業(yè)設計(論文)工作前期內(nèi)完成,經(jīng)指導教師簽署意見及所在專業(yè)審查后生效;
2.開題報告內(nèi)容必須用黑墨水筆工整書寫或按教務處統(tǒng)一設計的電子文檔標準格式(可從教務處網(wǎng)頁上下載)打印,禁止打印在其它紙上后剪貼,完成后應及時交給指導教師簽署意見;
3.“文獻綜述”應按論文的格式成文,并直接書寫(或打?。┰诒鹃_題報告第一欄目內(nèi),學生寫文獻綜述的參考文獻應不少于15篇(不包括辭典、手冊);
4.有關年月日等日期的填寫,應當按照國標GB/T 7408—2005《數(shù)據(jù)元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數(shù)字書寫。如“2007年3月15日”或“2007-03-15”。
畢 業(yè) 設 計(論 文)開 題 報 告
1.結合畢業(yè)設計(論文)課題情況,根據(jù)所查閱的文獻資料,每人撰寫
2000字左右的文獻綜述:
文 獻 綜 述
一、輪式移動機器人的發(fā)展概況
近20年來,移動機器人的研究十分活躍,并得到了快速發(fā)展,這主要有兩個方面的原因:其一, 移動機器人的應用范圍很廣,包括國防工業(yè)、制造業(yè)、輕重工業(yè)以及服務業(yè)等諸多領域。其二,目前國內(nèi)外的星際探索和海洋開發(fā)兩大高端技術領域的市場需求也是促使移動機器人發(fā)展的客觀因素與潛在動力。機器人在各個領域正得到越來越廣泛的應用,在制造領域,為了保證較高的產(chǎn)品質(zhì)量,提高生產(chǎn)效率,機器人已成為現(xiàn)代化生產(chǎn)必不可少的手段之一。
到目前為止,地面運動機器人的行駛機構主要分為履帶式、步行式和輪式三種。這三種行駛機構各有其特點。
(1) 履帶式。最早出現(xiàn)在坦克和裝甲車上,后來出現(xiàn)在某些地面行駛機器人上。履帶式機器人可以在凹凸不平的地面上行走[1],可以跨越障礙物,爬梯度不太高的臺階,具有行駛速度較快(介于輪式和腿式之間),承載能力較強,但轉(zhuǎn)向不易,比較笨重的特點。如圖1所示的履帶式移動機器人,由于其采用了像坦克那種的履帶式設計,因此能夠適用于更廣泛的地形。
圖1 履帶式移動機器人
(2)步行式。其中步行式機器人對場地有良好的適應能力,特別是多足機器人,能夠跨越臺階,但動作是間歇的,速度不快,且控制復雜,實現(xiàn)相對困難[2]。從移動的方式來看,步行式移動機器人可以分為兩類:動態(tài)行走機器人和靜態(tài)行走機器人。根據(jù)支腿的數(shù)量又可分為兩足、四足、六足和多足,這里僅對六足行走機構和多足行走機構進行介紹。
①六足行走機構
采用六足行走機構的機器人很多[3],一般都采用變換支撐腿的方式,將整體的重心從一部分腿上轉(zhuǎn)移到另一部分腿上,從而達到行走的目的。具有代表性的有美國CMU大學開發(fā)的一種六足結構(如圖2),它是由六條支腿組成,每條支腿具有由水平旋轉(zhuǎn)和垂直移動兩個自由度。在行走過程中,整個支腿可以繞軸端在水平面內(nèi)進行旋轉(zhuǎn),支腿的末端可以通過連桿機構進行垂直方向的上下移動,以調(diào)整姿態(tài),最終使機器人保持水平。通過六條腿的交替運動來實現(xiàn)機器人的行走。
②多足行走機構
如圖3所示的八足仿生機器人,這種機構是一種八足行走的移動機構,其運動的特點是在前行時相對于身體總是后腿到前腿的順序,后腿著地后前腿才離地,機器人兩側(cè)的相應部分也是成相位交替著運動。近期的八足機器人,在結構上沒有太大的突破,在控制方面,則不斷地出新,將現(xiàn)代的計算機等高科技應用到機器人上。
由此可以看出,對于步行式移動機器人,雖然越野能力比較強,但其結構復雜,行走速度比較緩慢。
圖2 六足仿生機器人 圖3 八足仿生機器人
(3)車輪式。車輪式移動機器人具有結構輕、動作穩(wěn)定、操縱簡單、其移動速度和方向容易控制等優(yōu)點。常用來在無人工廠中搬運零部件或做其它工作,適用于平地行走,運動速度快,但其越野能力比步行式機器人稍遜一籌[4-5]。但隨著各式各樣的車輪底盤和懸架系統(tǒng)的出現(xiàn),像美國MCU的六輪三體柔性機器人Robby和美國研制的火星探路者機器人,使得車輪式機器人能適應凹凸不平的地形[6-7],越野能力大大加強。于是人們對機器人移動機構研究的重點也隨之轉(zhuǎn)移到輪式機構上來,近期日本開發(fā)出一種結構獨特的五點支撐懸吊結構MiCro5,由于其采用一支撐輪,所以有很好的越野能力。輪式移動機器人按輪數(shù)的多少又可分為三輪、四輪、五輪、六輪以及多輪,其中以四輪和六輪研究居多,所以下面僅對四輪、六輪進行簡單的介紹[8]。
①四輪。四輪結構一般比較簡單,但其越野能力有限,如圖4所示為一四輪移動機器人。要想提高此類機器人的越野能力,就必須對其底盤機構及驅(qū)動方式進行改進。具有代表性的是美國MCU研制的Nomad,它采用的是可變形的底盤和均化懸掛系統(tǒng)。其底盤可通過兩個四桿機構進行變形,當?shù)妆P展開時四桿機構變成一個菱形,當?shù)妆P收縮時四桿機構變成一條直線。均化懸掛系統(tǒng)可以平滑機器人本體相對于輪子的運動,這種結構可保證在各種地形情況下四輪都能同時著地。
圖4 四輪機器人 圖5 “勇氣號”火星探測車
②六輪。具有代表性的是美國研制的火星探測車,如圖5所示,它采用的是六輪搖臂懸架機構,其采用對稱式結構,單側(cè)搖臂主要包括主搖臂、副搖臂、前后兩個主動輪以及中間的隨動輪。與四輪結構相比,由于引入了副搖臂和從動輪,當遇到障礙時,通過對副搖臂的轉(zhuǎn)動,并借助于從動輪來調(diào)整重力在各個輪上的分力,可以提高車體的穩(wěn)定性和越野能力。
2、 關鍵技術研究
1. 導航控制技術
移動機器人導航(Mobile Robot Navigation)是指在具有障礙物的環(huán)境中,按時間最優(yōu)、路徑最短或能耗最低等約束條件,實現(xiàn)從起始位置到指定目標位置的無碰撞運動[9]。
在自主式移動機器人相關技術的研究中,導航技術是其研究核心,也是移動機器人實現(xiàn)智能化及完全自主的關鍵技術。因此,移動機器人要想實現(xiàn)自主導航,必須具備以下能力:
1)能實現(xiàn)基本的趨向目標功能,如到達給定目標或者跟蹤指定目標;
2)能對非預見性事件做出實時反應,如躲避一個突然出現(xiàn)的障礙物;
3)能創(chuàng)建、維護和使用環(huán)境地圖;
4)通過學習得到障礙物在地圖中的位置之后能可靠避開該障礙物;
5)能識別三維地形,并能改變其力矩以適應不同的地形;
6)具有規(guī)劃制定能力,如制定一個能避開環(huán)境中的陷阱且能完成特定目標的規(guī)劃。
目前,國內(nèi)外研究學者對移動機器人導航技術的研究已取得了大量的成果,但還有很多關鍵理論和技術問題有待解決和完善。移動機器人的導航方式有多種,目前尚無統(tǒng)一的分類標準。一般根據(jù)環(huán)境信息的完整程度、導航指示信號類型、導航地域等因素的不同,可將導航分為地磁導航、航跡推算導航、慣性導航、基于地圖導航、主動信標導航、路標導航、GPS導航、視覺導航和其它方式導航。
2. 運動控制技術
近年來隨著人工智能技術、計算機技術等相關技術的發(fā)展,對智能機器人的研究越來越多。輪式移動機器人可以作為各種智能控制方法的良好載體,同時又可以方便的構成網(wǎng)絡化的分布系統(tǒng),開展多智能體的調(diào)度、規(guī)劃等研究,所以對他的研究越來越受到重視。
一個全方位移動機器人的控制系統(tǒng)體系結構,包括傳感器、通訊、伺服控制系統(tǒng)等。
系統(tǒng)可以分成以下四個模塊:監(jiān)控模塊、感知模塊、路徑規(guī)劃和逆運動學計算模塊、執(zhí)行模塊。
(1)監(jiān)控模塊
該模塊的功能通過監(jiān)控計算機來實現(xiàn),主要功能包括:
①任務描述:利用操作者規(guī)定的語言,描述對機器人的控制任務。
②監(jiān)控指令輸入:在機器人完成任務的過程當中,操作者根據(jù)任務的執(zhí)行情況以及環(huán)境的狀況,對系統(tǒng)進行適當?shù)母深A,以充分發(fā)揮人的智能,構成人-機合作系統(tǒng)。如遇到不可避開的障礙、或者多個機器人運動過程中發(fā)生死鎖等意外情況,都需要操作者適時的干預。
③文本和圖形的顯示界面:以文本或者圖形的方式實時地顯示機器人系統(tǒng)的工作信息,包括當前正在執(zhí)行的任務,機器人的位置、 速度、 障礙物等環(huán)境信息。監(jiān)控計算機是通過無線網(wǎng)絡與每一個移動機器人取得聯(lián)系的。
(2) 感知模塊
傳感器作為機器人的感知部分,是機器人具有自主能力的重要前提條件。
(3) 路徑規(guī)劃以及運動學求解、 軌跡插補模塊
(4) 執(zhí)行模塊
傳統(tǒng)的分級式控制器一般都采用通用微機或以單片機作為下位機來實現(xiàn)位置控制,外圍電路復雜,計算速度慢,上位機和下位機同步困難,從而導致控制精度不夠理想。
3. 結構設計
移動機構是組成移動機器人的重要部分,它是保證機器人實現(xiàn)功能要求的關鍵,其設計的成功 與否將直接影響機器人系統(tǒng)的性能。目前,移動機構開發(fā)的種類已相當繁多,其中全方位輪移動機構具有完美的運動性能, 它可利用車輪所具有的定位和定向功能, 實現(xiàn)平面上的自由運動 , 即能夠在當前位置沿著任意方向的路徑移動,并對自己所處位置進行細微調(diào)整,實現(xiàn)精確定位和高精度軌跡跟蹤 。因此它對移動機器人具有重要的意義,在機器人技術中得到廣泛應用,成為機器人移動機構的發(fā)展趨勢。當前全方位輪有多種形式,其中Mecanum輪是做得較為成功 、技術成熟的一種全方位輪。
全方位移動機構運動非常靈活,可在二維平面上從現(xiàn)在位置向任意方向運動而不需要車體改變姿態(tài)。在某些場合有明顯的優(yōu)越性;如在較狹窄或擁擠的場所工作時,全方位移動機構因其回轉(zhuǎn)半徑為零而可以靈活自由的穿行。另外,在許多需要精確定位和高精度軌跡跟蹤的時候,也需要利用全方位移動機構的特點對自己所處的位置進行細微的調(diào)整?,F(xiàn)在比較常見的全方位移動機構有空氣懸浮式、球履帶式、輪式等許多種.輪式全方位移動機 構又可分為球輪驅(qū)動式、全輪轉(zhuǎn)向式、麥克納姆輪式,等等[10]。球輪驅(qū)動式全方位移動機構是由日本電通大的越山等人研制成功的。它由一個球形輪構成;外部是一個拱形殼,移動和控制機構在輪的內(nèi)部,結構比較復雜,承載較小。全輪轉(zhuǎn)向式移動機構理論上可行,但由于每個輪上均需要復雜的轉(zhuǎn)向機構,實際中也很少有人采用。麥克納姆輪式全方位移動機構應用的相對較多本文即是從麥克納姆輪中得到啟發(fā),構思設計了一種新式全方位輪,進而設計制造了一種輪式全方位移動機構。
麥克納姆輪是瑞典麥克納姆公司的專利,圖6為它的結構簡圖。在它的輪緣上斜向分布著許多小滾子,故輪子可以橫向滑穆。小滾子的母線很特殊;當輪子繞著固定的輪心軸轉(zhuǎn)動時,各個小滾子的包絡線為圓柱面,所以該輪能夠連續(xù)地向前滾動。麥克納姆輪結構緊湊、運動靈活,是很成功的一種全方位輪。由四個這種輪加以組合,可以使機構實現(xiàn)全方位移動功能[11]。
圖6 麥克納姆輪
Mecanum輪的輪體的圓周不是由普通的輪胎組成[12] ,而是分布了許多鼓形小輥子。由4個Mecanum輪全方位輪組成的萬向移動機構,運轉(zhuǎn)靈活,控制方便,若在輪體上追加傳感器, 再控制好轉(zhuǎn)速和轉(zhuǎn)向,就可能實現(xiàn)精確定位和軌跡跟蹤,應用前景較好[13]
畢 業(yè) 設 計(論 文)開 題 報 告
2.本課題要研究或解決的問題和擬采用的研究手段(途徑):
1. 輪式移動機器人的工作原理和設計要求。
移動機器人是一種由傳感器、遙控操作器和自動控制的移動載體組成的機器人系統(tǒng)。移動機器人隨其應用環(huán)境和移動方式的不同,研究內(nèi)容也有很大差別。其共同的基本技術有傳感器技術、移動技術、操作器、控制技術、人工智能等方面。它有相當于人的眼、耳、皮膚的視覺傳感器、聽覺傳感器和觸覺傳感器。移動機構有輪式(如四輪式、兩輪式、全方向式、履帶式)、足式(如6足、4足、2足)、輪腿式(用輪子和足)、特殊式(如吸附式、軌道式、蛇式)等類型。輪子適于平坦的路面,足式移動機構適于山岳地帶和凹凸不平的環(huán)境。
2. 功能模塊。
模塊化廣泛地應用于機械、電子和計算機等行業(yè)。目前對模塊化還沒有一個統(tǒng)一的定義,一般可以這樣理解:統(tǒng)籌考慮產(chǎn)品系統(tǒng),把其中含有相同或相似的功能單元分離出來,用標準化原理進行統(tǒng)一、歸并、簡化,以通用單元的形式獨立存在.這就是模塊,然后用不同的摸塊組合成新產(chǎn)品,這就是模塊化.因此,模塊化技術主要包含2個方面的內(nèi)容:一是模塊的合理分解,二是模塊的有效組合.其概念及特點如圖7所示[14]
圖7:模塊化概念及特點
參考文獻:
[1] Nildeep Patel, Alex Ellery. Chris Welch and Andv Curley. Preliminary analysis of mobility and suspension systems for a mars micro rover[R]. International Astronautical Congress of the International Astronautical Federation (IAF). Oct. 10-19.2002. Houston, TX, USA.
[2] 查選芳,張融甫.多足步行機器人支腿機構的運動學研究[J].東南大學學報,
1995(3):103-107.
[3] Reid Simmons, Eric Krotkov and John Bares. A Six-legged Rover for Planetary Exploration. AIAA-91-3812-CR. 1991:739-747.
[4] Burg J> Blazevic P. Anti-lock Braking and Terrain Control Concept for All-Terrain Robotic Vehicle.Proceedings of IEEE International Conference on Robotics and Automation. 1997:1400-1405.
[5] Steward Moorehead, Dimitrios Apostolopoulos. Autonomous Navigation Field Results of a Planetary Analog Robot in Antarctica. Proc. of the 5th,International Symposium on Artifical Intelligence, Robotics and Automation in Space.1999: 237-242.
[6] F. Jindra. Obstacle Performance of Articulated Wheeled Vehicles. Journal of Terrain Mechanics. 1996,3(2):39-56.
[7] S. Niranijan, H. Rao Matthew. The Role of Terrain Modeling in Lunar Rover Simulation[C]. Simulation. 1993,6(1):60-68.
[8] 徐國華,譚民.移動機器人的發(fā)展現(xiàn)狀及其趨勢[J].機器人技術與應用.
2001,(3): 7-14.
[9] R.Araújo,A.T.D.Almeida.Learning Sensor-Based Navigation of a Real Mobile Robot in Unknown Worlds.IEEE Transactions on Systems,Man and Cyernetics,
Part B:Cyernetics.1999,29(2):164-178.
[10] 趙言正.全方位壁面移動機器人系統(tǒng)的研究[D].哈爾濱:哈爾濱工業(yè)大學,1999.
[11] 趙言正,門廣亮,閏國榮,等.具有全方位移動功能的爬壁機構[J].高技術通訊,1995,5(6):4l-42.
[12] Chung Jae Heon,Yi Byung—Ju.Kim Whee Kuk.Lee Hogi l.The dynamic modeling and analysis for an omnidirectional mobile robot with three caster wheels[J].Mobile Robot,IEEE,1994:(3)3091—3096.
[13] 張海兵.輪式全方位移動機構的研究[D].哈爾濱:哈爾濱工業(yè)大學,2001.
[14] 張寶輝.模塊化總體設什研究[D],長沙:國防科學技術大學.2004.
畢 業(yè) 設 計(論 文)開 題 報 告
指導教師意見:
1.對“文獻綜述”的評語:
2.對本課題的深度、廣度及工作量的意見和對設計(論文)結果的預測:
指導教師:
年 月 日
所在專業(yè)審查意見:
負責人:
年 月 日