購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
2001屆IEEE機(jī)器人與自動(dòng)化國(guó)際會(huì)議
于2001年五月韓國(guó)漢城舉行
多壁碳納米管的三維超微型機(jī)械人裝置操作
利辛東*,秋篠宮文仁親王新井*,和福田敏男*
*名古屋大學(xué)微系統(tǒng)工程系
**名古屋大學(xué)××中心合作研究在先進(jìn)的科學(xué)與技術(shù)
日本名古屋464-8603東區(qū),呋喃首席人事官
dong@robo.mein.nagoya-u.ac.j p, arai@mein.nagoya-u.ac.j p, fukuda@mein.nagoya-u.ac.j p
摘要:
多壁碳納米管(碳納米管)是在三維空間中操縱一10-DOF 超微型機(jī)械人裝置操縱,這包括壓電換能器,促進(jìn)驅(qū)動(dòng)(新焦點(diǎn)Inc.)和內(nèi)部的掃描操作,電子顯微鏡(SEM)。機(jī)械手的粗線的分辨率優(yōu)于30nm(X,Y,Z階段驅(qū)動(dòng)促進(jìn))和旋轉(zhuǎn)一個(gè)2毫弧度,而光纖制造設(shè)備運(yùn)動(dòng)的決議(驅(qū)動(dòng)PZT)是在納米級(jí)的。原子力顯微鏡的懸臂作為末端執(zhí)行器。操作的多壁碳納米管的幾種與介電電泳和范德瓦爾斯部隊(duì)的協(xié)助下開發(fā)的機(jī)器人進(jìn)行。估計(jì)尺寸Φ40nmx7plm單壁碳納米管被原子力顯微鏡懸臂拾起。另一個(gè)50nmx6pm 米碳管之間放置兩個(gè)懸臂,還有一個(gè)040nmx8u米碳管的彎曲懸臂和樣品基質(zhì)。碳納米管(CNTs)連接是基于碳納米管更復(fù)雜的設(shè)備的基本構(gòu)建塊。交叉連接兩個(gè)為~Φ40nm×6um,~Φ50nm×7μm的維度,和一個(gè)丁字路口是由兩個(gè)碳納米管的~Φ40nm×3um.force測(cè)量尺寸進(jìn)行抗彎剛度和一個(gè)~Φ30nm×7μm厚的多壁碳納米管,它們楊氏模量的估值分別是8.641×l0-20nm2和2.17tpa。這樣操作的兩個(gè)性質(zhì)研究的碳納米管和碳納米管為基礎(chǔ)的納米電子機(jī)械系統(tǒng)制造是必不可少的。
關(guān)鍵詞:三維操縱,碳納米管,碳納米管,納米電子機(jī)械系統(tǒng)懸臂,介電電泳,掃描電鏡
1、介紹
飯島愛(ài)后[ 1 ]觀察和鑒定第一奈米碳管(CNT)在富勒烯煙炱,許多研究工作已經(jīng)完成對(duì)碳納米管的理論和實(shí)驗(yàn),它們研究表明他們有特殊的機(jī)械和電氣性能。機(jī)械地說(shuō),碳納米管作為最終的纖維,電子的量子線,和化學(xué)和生物探針和納米容器。西都[ 2 ]和[ 3 ]首先預(yù)測(cè)濱田的碳納米管的金屬/半導(dǎo)體性質(zhì)。單壁碳納米管(SWNTs)的合成由飯島愛(ài)的AML橋[ 4 ]。個(gè)人多壁管(MWNTs)分別測(cè)定由西班牙的[ 6 ]埃布森 [ 5 ],西班牙的[ 8 ]L蘭格[ 7 ] 使用一個(gè)單獨(dú)的碳納米管原子力顯微鏡尖端的技術(shù)。帖后[ 9 ]產(chǎn)生散、單分散的單壁碳納米管l.4-nm。曬黑[ 10 ]和巴克拉斯[ 11 ]在個(gè)別單壁碳納米管和束中觀察到單電子效應(yīng)。最近有報(bào)道[ 12 ],裝置如碳納米管量子電阻和室溫下的單壁碳納米管晶體管,對(duì)其機(jī)械特性進(jìn)行了研究[ 14 ],在這些研究中,利用原子力顯微鏡與一個(gè)優(yōu)秀的虛擬現(xiàn)實(shí)界面的二維平面中的碳納米管的一些操作報(bào)告[ 18 ],可知在拉伸載荷作用下的破壞機(jī)理和多壁碳納米管的強(qiáng)度已經(jīng)解決了三維操縱[ 16 ]的幫助。
納米操縱,或位置控制在納米尺度,是對(duì)分子納米技術(shù)的第一步。隨著納米技術(shù)的進(jìn)步,需要操縱成為進(jìn)入納米尺度的物體。雖然原子力顯微鏡(原子力顯微鏡)是能夠適當(dāng)?shù)男?dòng)作(埃的十分之一),但不能重復(fù)的位置。這也是目前有限的三個(gè)自由度,沒(méi)有旋轉(zhuǎn)的控制。作為掃描探針,它工作得很好;作為一個(gè)納米技術(shù)的施工設(shè)備,它實(shí)際上是有限的到二維平面。
這是在三維空間中構(gòu)建納米結(jié)構(gòu)與器件非常重要的操縱納米對(duì)象。為了實(shí)現(xiàn)這樣的操作,具有納米級(jí)分辨率的機(jī)器人將是有用的工具。對(duì)于一個(gè)超微型機(jī)械人裝置操縱三維操作的基本要求包括納米尺度的位置分辨率,相對(duì)大的工作空間,足夠的自由度的末端執(zhí)行器的三維定位,并通常與復(fù)雜的操作,多終端效應(yīng)。一個(gè)關(guān)鍵的技術(shù)將如何設(shè)計(jì)末端執(zhí)行器在微/納米級(jí)的世界[ 19 ]的物理現(xiàn)象?它是申請(qǐng)一個(gè)微型帆船實(shí)現(xiàn)納米級(jí)物體的拾取和放置操作,而它已被證明。因?yàn)榧舻逗臀矬w之間的電磁相互作用引起大于重力引起的剪應(yīng)不同[ 19 ]對(duì)象的離開。因此,它是一個(gè)更廣闊的戰(zhàn)略,是通過(guò)控制相互作用的工具和對(duì)象,而不是用夾持器之間實(shí)現(xiàn)納米操作?;緦?shí)驗(yàn)報(bào)道[日]幾種策略控制的相互作用已經(jīng)提出[ 19-2l ],和一個(gè)遙控觸摸系統(tǒng)也被提出[ 22 ]。
在下面,一個(gè)超微型機(jī)械人裝置操縱在2節(jié)首先介紹,然后對(duì)超微型機(jī)械人裝置操縱策略3節(jié)中介紹的一些實(shí)驗(yàn)操作,并在4節(jié)中的報(bào)道。在5節(jié)中,力測(cè)量方法的介紹
2。超微型機(jī)械人裝置操縱
開發(fā)了一套超微型機(jī)械人裝置操縱。如下圖所示,有3個(gè)單位共10自由度包括三自由度單元(x-y-a階段,一個(gè)是沿x軸旋轉(zhuǎn))放置樣品基板,一個(gè)單自由度單元2(Z級(jí))定位的原子力顯微鏡懸臂梁和六自由度壓電驅(qū)動(dòng)單元3個(gè)懸臂梁的定位。樣品基板,也可以放在2或3方便操作單元。單元1單元2具有線性沖程6mm和旋轉(zhuǎn)360度。對(duì)于粗運(yùn)動(dòng)的線性分辨率為30nm(X,Y和Z階段)和旋轉(zhuǎn)一個(gè)2mrad。3單元是用于補(bǔ)償步進(jìn)運(yùn)動(dòng)單位L和2的壓電驅(qū)動(dòng)的,具有納米級(jí)分辨率的六自由度。
在X-Y臺(tái)旋轉(zhuǎn)毛發(fā)運(yùn)動(dòng)(新焦點(diǎn)Inc.)由兩個(gè)平移安裝硅基板毛發(fā)運(yùn)動(dòng)驅(qū)動(dòng),這是用于放置被操縱的。在硅襯底,薄膜的鋁涂層作為施加電場(chǎng)產(chǎn)生電極的介電泳力。另一個(gè)電極可以是有線或懸臂單位2或3。使懸臂尖端和硅板絕緣對(duì)方,聚酰亞胺薄膜粘貼在鋁膜。原子力顯微鏡懸臂和樣品之間的介電電泳的方法示于圖(接線單元3是類似的Z級(jí),因此未顯示)。請(qǐng)注意,在單位L樣品基板的位置和懸臂梁2交換單元。
六自由度8驅(qū)動(dòng)單元用來(lái)補(bǔ)償單位L和2步進(jìn)運(yùn)動(dòng)。為獲得更大的工作空(26x22x35ltm3)和一個(gè)更高的分辨率,雙指令驅(qū)動(dòng)和閉環(huán)控制應(yīng)用于此微刻手。致動(dòng)器和傳感器的疊加使3號(hào)機(jī)組變?yōu)樾∏傻捏w積,容易放入掃描電子顯微鏡 [ 25 ]。
獲得實(shí)時(shí)觀測(cè)的機(jī)器人操作,全套安裝在掃描電鏡(JEOL jsm-5300)和二次電子探測(cè)器,具有相對(duì)大的真空室。顯微鏡的分辨率被指定為在30kV中4nm,然而,實(shí)時(shí)視頻的分辨率是兩個(gè)或三個(gè)較低的一個(gè)因素。所有的導(dǎo)線通過(guò)隔離真空饋通器通過(guò)掃描電鏡室壁連接。所有的機(jī)械部件和電纜從掃描電子顯微鏡觀察區(qū)域得到了妥善的保護(hù),減少圖像失真的充電效果。
可以發(fā)現(xiàn),機(jī)器人滿足所有的納米操作的基本要求。它共有10自由度和三個(gè)單位的雙懸臂梁,工作空間6x6x12mm3與3600旋轉(zhuǎn),粗分辨率為30nm和2mrad而細(xì)的納米尺度。它是為里面的一個(gè)掃描電鏡的真空室,所以對(duì)于操作的實(shí)時(shí)觀測(cè)是實(shí)現(xiàn)和懸臂尖端和樣品之間的力也可以用多次曝光技術(shù)測(cè)量。
3、超微型機(jī)械人裝置操縱原理
處理微對(duì)象,由量子和電磁效應(yīng)引起的相互作用不可忽視,這是不同于宏觀世界。例如,在珠直徑和在掃描電子顯微鏡真空無(wú)限板之間相互作用的主要是范德瓦爾斯力[ 22 ]。 另一方面,介電電泳力格式化數(shù)據(jù)輸入程序是一個(gè)客觀珠半徑R函數(shù),珠8和電場(chǎng)E0的介電系數(shù)。
由于介電泳力是電場(chǎng)強(qiáng)度的梯度功能,很容易通過(guò)改變AP控制:使用電壓。它也更容易實(shí)現(xiàn)比控制其他種類的粘附力。用于產(chǎn)生非均勻電場(chǎng)梯度,用鋒利的針如原子力顯微鏡懸臂梁與板的兩個(gè)電極,它是有效的。因此,可以拿起一個(gè)物體放置在板如圖2所示如果介電泳力大于范德瓦爾斯作用力的粒子。為了實(shí)現(xiàn)這樣的操作,有兩種方式可以有效地使用,其中一個(gè)減少范德瓦爾斯的部隊(duì)在[ 19 ]和[ 20 ]描述。另一種方法是控制強(qiáng)度和電場(chǎng)梯度
場(chǎng)。
如圖所示,一個(gè)放置在一個(gè)理想的板(粗糙度,B = 0,因此B / Z = 0)在掃描電子顯微鏡中不能拿起時(shí)產(chǎn)生的介電泳力電壓為100V(3區(qū))。因?yàn)楦袷交瘮?shù)據(jù)輸入程序<前輪驅(qū)動(dòng)(在這種情況下,粘結(jié)力的其他種類被忽略,因?yàn)樗鼈兒艽蟪潭壬喜患胺兜峦郀査梗?。該操作可以?shí)現(xiàn)通過(guò)增加電壓(例如多達(dá)500)以提高介電泳力,或通過(guò)增加的粗糙度(如B / Z = 10甚至100)的板以減少范德瓦爾斯力珠。
4、操作實(shí)驗(yàn)
4. 1在多壁碳納米管中拿起,放置,彎曲
與發(fā)達(dá)的超微型機(jī)械人裝置操縱的,單個(gè)碳納米管操作某些種類都試過(guò)了。我們的目標(biāo)是構(gòu)建碳納米管的三維結(jié)構(gòu),同時(shí)研究他們的機(jī)械和電子特性,在這里我們顯示了一些初步分析結(jié)果。
圖4顯示一個(gè)單一的M通風(fēng)孔是拿起的原子力顯微鏡懸臂的2個(gè)單位,其中有一個(gè)大概的尺寸q40nmx7y,M.圖表明多壁碳納米管之間放置兩個(gè)懸臂,和6顯示了多壁碳納米管彎曲。這樣的操作是必不可少的兩個(gè)性質(zhì)研究的碳納米管和碳納米管的制備和制造基于計(jì)數(shù)器的納米電子機(jī)械系統(tǒng)。
4.2多壁碳納米管路口建設(shè)
4.2一種接頭的類型
最近一種接頭的可能性對(duì)連接管的不同直徑和手性產(chǎn)生了相當(dāng)大的興趣 [ 30 ],這是因?yàn)樵撀房谑羌{米電子器件的構(gòu)建塊的可能性。雖然連接是隨機(jī)發(fā)現(xiàn)了碳納米管樣品,但這是找來(lái)制造這樣的基本結(jié)構(gòu)的技術(shù)意義。CNT連接施工難度取決于連接的類型。碳納米管連接類型以碳納米管的類型確定,碳納米管的結(jié)構(gòu)和連接方法:
(1)種碳納米管
1)金屬單壁碳納米管
2)半導(dǎo)體單壁碳納米管
3)金屬單壁碳納米管
4)的多壁碳納米管(金屬)
(2)配置
1)V或j-接頭
2)丁字路口
3)Y-路口
4)X-路口
5)更復(fù)雜的(例如,3D)連接
(3)連接措施
1)范德瓦爾斯
2)電子束焊接
3)化學(xué)鍵
4)其它方法
4.2.2多壁碳納米管的路口
(1)X結(jié)
一個(gè)X結(jié)(交叉路口)與q40nmx6ym和維度(P 50nm×7P)兩個(gè)多壁碳納米管的。如圖所示,兩個(gè)多壁碳納米管負(fù)載的碳納米管在樣品基質(zhì)和原子力顯微鏡懸臂原材料之間。雖然不能確定清楚如何兩個(gè)多壁碳納米管連接從掃描電子顯微鏡的局限性,它是合理的說(shuō)他們的軍隊(duì)與范德瓦爾斯。我們?cè)谶@里展示一個(gè)X結(jié)和一個(gè)丁字路口的多壁碳納米管的范德瓦爾斯部隊(duì)的超微型機(jī)械人裝置操縱節(jié)理。
(2)丁字路口
一個(gè)丁字路口是q40nmx3pt尺寸,M和p50nmx2ym兩個(gè)碳納米管,如圖所示。丁字路口舉行的原子力顯微鏡懸臂。同樣地,好像兩個(gè)多壁碳納米管與范德瓦爾斯軍隊(duì)節(jié)理。
5、力的測(cè)量
懸臂和物體之間的力信息的重要是因?yàn)樗鼘?duì)機(jī)械手的控制的必要性和對(duì)碳納米管和碳納米管結(jié)的特性研究,以及更復(fù)雜的碳納米管結(jié)構(gòu)。采用掃描電子顯微鏡圖像和校準(zhǔn)的原子力顯微鏡的懸臂與視頻或多次曝光技術(shù)測(cè)量的力量。
5.1抗彎剛度的多壁碳納米管
一個(gè)單一的碳納米管的屈曲,我們?cè)噲D通過(guò)測(cè)量受碳納米管和碳納米管和懸臂梁的變形力評(píng)估碳納米管的剛度。圖(a)和(b)顯示兩個(gè)連續(xù)的掃描電鏡圖像幀記錄在彎曲過(guò)程中,(c)和(d)描述分析模型(a)和(b),分別和(E)顯示在多壁碳納米管的力量。根據(jù)歐拉公式和力的平衡關(guān)系,可以得到以下方程。
其中,W ]和W2是屈曲力受基體的碳納米管,F(xiàn)是在圖9懸臂反應(yīng)力的差異(A)和(B),E / Z的楊氏模量,是面積的二次矩,和其他參數(shù)和它們的值在表1列出,在那里Al,A2,嗨,H2值,8和D測(cè)圖(a)和(b),k是一個(gè)格溫校準(zhǔn)值。
掃描電子顯微鏡限制我們得到的碳納米管的納米管和詳細(xì)的幾何結(jié)構(gòu)的直徑的精確值,因此難以獲得相對(duì)準(zhǔn)確的楊氏模量值。但得到的楊氏模量的一個(gè)保守的估計(jì),這是實(shí)心圓柱和D = 30nm合理的假設(shè)。然后我們得到了E = 2.17tpa。這是一點(diǎn)點(diǎn)比[ 14 ]中獲得的平均值,在那里他們應(yīng)用熱振動(dòng)的方法和得到的平均值E = 1.8tp,但單個(gè)納米管的數(shù)據(jù)范圍從0.4到4.15tpa。通過(guò)多次曝光技術(shù)測(cè)量在式(5)的結(jié)果是合理的。
5.2力如圖10顯示了這個(gè)力測(cè)量方法的原理
兩個(gè)校準(zhǔn)懸臂“戰(zhàn)斗”彼此。左邊的向上移動(dòng)20.20um,尖端的正確的變形具有相同的距離。根據(jù)懸臂梁的剛度,它可以認(rèn)為兩種懸臂之間的力是607.2nn。
國(guó)際測(cè)量師聯(lián)合會(huì)表明,多壁碳納米管回升到原子力顯微鏡的懸臂。在這個(gè)過(guò)程中,該部隊(duì)(主要是范德瓦爾斯軍隊(duì))的原子力顯微鏡懸臂和樣品之間的be314.9nn。圖(a)和(b)顯示一個(gè)X結(jié)推拉上的多壁碳納米管的變形。
圖12(C)是一個(gè)多重曝光的照片,描繪了同樣的過(guò)程顯示圖(a)和(b)。從圖(C),在這個(gè)過(guò)程中發(fā)生的力的測(cè)量是54.6nn 。
6、結(jié)論
帶有兩個(gè)懸臂10-DOF 超微型機(jī)械人裝置操縱已經(jīng)建成,在掃描電子顯微鏡。通過(guò)調(diào)節(jié)施加的原子力顯微鏡的懸臂和樣品基體之間的電壓,對(duì)介電泳力對(duì)象有效控制。三維操作是在多壁碳納米管的介電泳力控制輔助實(shí)現(xiàn),和力的測(cè)量進(jìn)行了。正在開發(fā)的機(jī)器人將為納米顆粒的性能研究與納米積木(如碳納米管納米級(jí)的裝置)建設(shè)的基本工具。力進(jìn)行測(cè)量和抗彎剛度和一個(gè) p30nmx7ktm多壁碳納米管的楊氏模量的估計(jì)分別8.641xl0-20nm2和2.17tpa。
致謝
我們感謝在三重大學(xué)教授齋藤為我們的研究多壁碳納米管樣品提供有益討論,并作感謝教授R. Saito在電氣通信大學(xué)提出對(duì)碳納米管的一本書的指導(dǎo)。
參考:
[1] S. lijima, Helical Microtubules of Graphitic Carbon, Nature, V01.354, pp.56-58 (1991).
[2] R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (1998).
[3] N. Hamada, S. I. Sawada and A. Oshiyama, New One-Dimensional Conductors: Graphitic Microtubules, Phys. Rev. Lett., V01.68, pp.1579 -1581(1991).
[4] S. Iijima and T. Ichihashi, Single-Shell Carbon Nanotubes of l-nm Diameter, Nature, V01.363, pp.603-601(1993).
[5] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, Electrical Conductivity of Indiviclual Carbon Nanotubes, Nature, V01.382, pp.54 -56 (1996).
[6]H.J. Dai, E.W. Wong and C.M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of individual Carbon Nanotubes, Science, V01.272, pp.523-526 (1996).
[7] L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, et al, Quantum Transport in A Multiwalled Carbon Nanotube, Phys. Rev. Lett., V01.76, pp.479-482 (1996).
[8] H.J, Dai, J,H. Hafner, A.G. Rinzler, D.T. Colbert and R.E Smalley, Nanotubes as Nanoprobes in Scanning Probe Microscopy, Nature, Vol.3 84, pp.147-1 50 (1996).
[9] Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer and R.E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes, Science, V01.273, pp.483-487 (1996).
[10] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C.. Dekker, Individual Single-Wall Carbon Nanotubes as Quantum Wires, Nature, V01.386, pp.474 -477 (1997).
[11] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra A. Zettl, A. Thess and R. E. Smalley, Single-Electron Transport in Ropes of Carbon Nanotubes, Science, V01.275, pp.1922-1925 (1997).
[12] S. Frank. P. Poncharal, Z. L. Wang and W. A. d. Heer, Carbon Nanotube Quantum Resistors, Science, V01.280, pp.1744 -1746 (1998).
[13] S. J. Tans, A. R. M. Verchueren and C. Dekker, Room-Temperature Transistor Based on a Single Carbon Nanotube, Nature, V01.393, pp.49-52 (1998).
[14] M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes, Nature, V01.381, pp,678-680 (1996).
[15] E. W. Wong, P. E. Sheehan and C. M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, Vol.277, pp.1971-1975 (1997).
[16] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, V01.287, pp.637-640 (2000).
[17] S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney and B. Chan, Radial Deformation of Carbon Nanotubes by van der Waals Forces, Nature, V01.3 64, pp.5 14-5 16 (1993).
[18] M. Guthold, M.R. Falvo, W.G. Matthews, S. Paulson, S.Washburn, D. A. Erie, R. Superfine, F. P. Brooks, Jr. and R. M. Taylor II, "Controlled Manipulation of Molecular Samples with the nanoManipulator", IEEE/ASME Trans. On Mechatronics, V01.5, No.2, pp.189-198 (2000).
[19] F. Arai, D. Andou, T. Fukuda, et al., Micro Manipulation Based on Micro Physics -Strategy Based on Attractive Force Reduction and Stress Measurement, Proc. Of IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, V01.2, pp.236-241 (1995).
[20] F. Arai, D. Andou, Y. Nonoda, T. Fukuda, H. Iwata, and K. Itoigawa, Integrated Microendeffector for Micro- manipulation, IEEE/'ASME Trans. Mechatronics, V01.3,No.l, p.17-23 (1998).
[21] S. Saito, H. Miyazaki and T. Sato, Pick and Place Operation of Micro Object with High Reliability and Precision based on Micro Physics under 掃描電子顯微鏡, Proc. 1CRA;99, pp.2736-2743 (1999).
[22] M. Sitti, S. Horiguchi and H. Hashimoto, Tele-touch Feedback of Surfaces at the Micro/Nano Scale: Modeling and Experiments, Proc, of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.882-888 (1999).
[23] F. Arai, T. Noda, T. Fukuda and L.X. Dong, Basic Experiment on the Three Dimensional Nano-manipulation, Proc. of RoboMec'00 (JSME), No.2Al-62-080(2000) (in Japanese).
[24] L.X. Dong, F. Arai and T. Fukuda, 3D 超微型機(jī)械人裝置 Manipulators inside 掃描電子顯微鏡, Proc. of RSJ'2000, pp.81-82(2000).
[25] L.X. Dong, F. Arai and T. Fukuda, 3D 超微型機(jī)械人裝置 Manipulation of Nano-order Objects inside 掃描電子顯微鏡, Proc. of the 2000 Int'l Symp. on Micromechatronics and Human Science, pp.15 1- 156 (2000).
[26] L. Chico, V.H. Crespi, L.X. Benedict, et al, Pure Carbon Nanoscale Devices: Nanotube Heterojunctions, Phys. Rev. Lett., V01.76, pp.971-974 (1996).
[27] J.-C. Charlier, T. W. Ebbesen and Ph. Lambin, Structural and Electronic Properties of Pentagon-Heptagon Pair Defects in Carbon Nanotubes, Phys. Rev. B., V01.53, pp.11108-11112 (1996).
[28] R. Saito, G. Dresselhaus and M. S. Dresselhaus, Tunneling Conductance of Connected Carbon Nanotubes, Phys. Rev. B., V01.53, pp.2044-2050 (1996).
[29] S. Iijima, T. Ichihashi and Y. ando, Pentagons, Heptagons and Negative Curvature in Graphite Microtubule Growth, Nature, V01.356, pp.776-778 (1992).
[30] M. Menon and D. Srivastava, Carbon Nanotube "T Junctions": Nanoscale Metal-S emiconductor-Metal Contact Devices, Phys. Rev. Lett., V01.79, pp.4453-4456 (1997).