級數(shù)學(xué)下冊 16.3 分式方程(一) 精講精練 人教新課標版

上傳人:zhu****ng 文檔編號:99852755 上傳時間:2022-06-01 格式:DOC 頁數(shù):7 大?。?99.50KB
收藏 版權(quán)申訴 舉報 下載
級數(shù)學(xué)下冊 16.3 分式方程(一) 精講精練 人教新課標版_第1頁
第1頁 / 共7頁
級數(shù)學(xué)下冊 16.3 分式方程(一) 精講精練 人教新課標版_第2頁
第2頁 / 共7頁
級數(shù)學(xué)下冊 16.3 分式方程(一) 精講精練 人教新課標版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《級數(shù)學(xué)下冊 16.3 分式方程(一) 精講精練 人教新課標版》由會員分享,可在線閱讀,更多相關(guān)《級數(shù)學(xué)下冊 16.3 分式方程(一) 精講精練 人教新課標版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、16.3 分式方程(一) 【自主領(lǐng)悟】 1.當(dāng)______時,的值等于. 2.當(dāng)______時,的值與的值相等. 3.若方程的解是最小的正整數(shù),則的值為________. 4.下列關(guān)于的方程,是分式方程的是 ( ) A. B. C. D. 5.若與互為相反數(shù),則的值為 ( ) A. B.- C.1 D.-1

2、 6.解方程: (1); (2). 【自主探究】 問題1 下列關(guān)于的方程中,是分式方程的是( ) A. B. C. D. 名師指導(dǎo) 判斷一個方程是否為分式方程,主要是依據(jù)分式方程的定義,也就是看分母中是否含有未知數(shù)(注意:僅僅是字母不行,必須是表示未知數(shù)的字母).A項中的方程分母中不含未知數(shù),故不是分式方程;B項中方程分母含字母a,但它不是表示未知數(shù),也不是分式方程;同樣C項中的分母中不含表示未知數(shù)的字母;而D項的方程分母中含未知數(shù)x,所以D項是正確答案. 問題

3、2 若分式方程的解為,則的值為__________. 名師指導(dǎo) 如果已知方程的解,求方程中含有的字母系數(shù),一般方法是把已知的解直接代入原方程,再去解關(guān)于字母系數(shù)的新方程. 解題示范 把代入方程可得,解這個方程得,所以a的值為5. 問題3 若與互為相反數(shù),則可得方程___________,解得_________. 名師指導(dǎo) 兩個式子互為相反數(shù),即兩式相加為0,所以可得方程,解分式方程關(guān)鍵在于正確去分母,把方程兩邊同時乘以得,解得.求出結(jié)果后還應(yīng)注意檢驗,以確保原方程的解有意義. 問題4 解方程:(1); (2). 名師指導(dǎo) 解分式方程時,其基本思路主要是利用轉(zhuǎn)化思

4、想,將分式方程化為整式方程,首先要根據(jù)等式的基本性質(zhì)去分母,要注意必須是方程兩邊的每一項都要乘以各分母的最簡公分母,尤其不能忘記方程中的常數(shù),如方程(1)中的1,這一點往往容易被同學(xué)們忽視. 解題示范 解:(1)方程兩邊同乘,得 . 解得. 檢驗:時≠0,0是原分式方程的解. (2)方程兩邊同乘,得 . 化簡,得 . 解得. 檢驗:時,1不是原方程的解,原分式方程無解. 歸納提煉 解分式方程與解整式方程有一個根本的區(qū)別,就是解整式方程不要求寫出檢驗過程,但解分式方程如果沒有檢驗步驟,那將會是一個不完整的解題過程,檢驗是解方程的一個重要步驟,因為在去分母的同時,無形之中

5、就擴大了未知數(shù)的取值范圍,因此需要檢驗.判別時,只需將所解方程的根代入最簡公分母,看其值是否為0,是0則須將其舍去. 【自主檢測】 1.分式方程的解為 . 2.要使分式的值為,則的值為____________. 3.如果的值與的值相等,則___________. 4.若分式方程的解為,則的值為__________. 5.若關(guān)于的方程無解,則的值為___________. 6.下列方程中是分式方程的是 ( ) A. B. C.

6、 D. 7.解分式方程,去分母后所得的方程是 ( ) A. B. C. D. 8.化分式方程為整式方程時,方程兩邊必須同乘 ( ) A. B. C. D. 9.下列說法中,錯誤的是 ( ) A.分式方程的解等于0,就說明這個分式方程無解 B.解分式方程的基本思路是把分式方程轉(zhuǎn)化為整式方程 C.檢驗是解分

7、式方程必不可少的步驟 D.能使分式方程的最簡公分母等于零的未知數(shù)的值不是原分式方程的解 10.解方程:(1); (2)+ 3 =. 11.解方程:(1); (2). 12.若方程的一個解為,求代數(shù)式的值. 13.已知關(guān)于的方程的解為正數(shù),求的取值范圍. 【自主評價】 一、 自主檢測提示 5.解含有字母系數(shù)m的分式方程,得,因為原分式方程無解,所以方程的解代入分母即,由此可求出的值. 13.解含有字母系數(shù)m的分式方程,得,因為原方程的解為正數(shù),所以>0,即>0,從而求出的取值范圍.

8、 二、自我反思 1.錯因分析 2.矯正錯誤 3.檢測體會 4.拓展延伸 【例題】閱讀下列信息,增根:在分式方程的變形過中,有時可能會產(chǎn)生不適合原方程的根,即能滿足去掉分母后的整式方程,但代入原分式方程則無意義,我們把這樣的根叫做原分式方程的增根.請根據(jù)此知識,解決下述問題. 若分式方程有增根,試求m的值. 【點撥】分式方程會有增根,即把方程的解代入各分母的最簡公分母,其值為0,則,故方程產(chǎn)生的增根有兩種可能:.由增根的定義可知, 是原方程去分母后化成的整式方程的根,將它們代入變形后的整式方程,可求出m的值為-4或6. 總結(jié):(1)產(chǎn)生增根的原因:解分式

9、方程首先要去分母,方程兩邊同時乘以了一個含未知數(shù)的式子(最簡公分母),而由此得到的整式方程求出的解,可能會使方程所乘的式子值為0(即最簡公分母為0),從而導(dǎo)致出現(xiàn)結(jié)果是整式方程的解,但不滿足原分式方程,它是增根. (2)增根的求法:令公分母為0; (3)求有增根的方程中參數(shù)的值,應(yīng)先求出可能的增根,再將其代入化簡后的整式方程即可. 【例題】閱讀下列材料: 關(guān)于x的方程的解是;的解是;的解是;(即)的解是. (1)請觀察上述方程與解的特征,x的方程(m≠0)與上述方程有什么關(guān)系?猜想它的解是什么,并利用“方程的解”的概念進行驗證; (2)由上述的觀察、比較、猜想、驗證,可得到以下結(jié)論:如果方程的左邊是一個未知數(shù)倒數(shù)的a倍與這個未知數(shù)的的和等于2,那么這個方程的解是.請用這個結(jié)論解關(guān)于x的方程: (a≥-1). 【參考答案】(1);(2). 參考答案 1. 2.1 3.-1 4.5 5.1 6.A 7.C 8.D 9.A 10.(1);(2)無解 11.(1);(2)無解 12. 13.m<-2

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!