中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型六 二次函數(shù)與幾何圖形綜合題課件.ppt
《中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型六 二次函數(shù)與幾何圖形綜合題課件.ppt》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型六 二次函數(shù)與幾何圖形綜合題課件.ppt(51頁珍藏版)》請在裝配圖網(wǎng)上搜索。
題型六二次函數(shù)與幾何圖形綜合題 專題二解答重難點題型突破 類型一二次函數(shù)與圖形判定 例1 2017 營口 如圖 拋物線y ax2 bx 2的對稱軸是直線x 1 與x軸交于A B兩點 與y軸交于點C 點A的坐標(biāo)為 2 0 點P為拋物線上的一個動點 過點P作PD x軸于點D 交直線BC于點E 1 求拋物線解析式 2 若點P在第一象限內(nèi) 當(dāng)OD 4PE時 求四邊形POBE的面積 3 在 2 的條件下 若點M為直線BC上一點 點N為平面直角坐標(biāo)系內(nèi)一點 是否存在這樣的點M和點N 使得以點B D M N為頂點的四邊形是菱形 若存在 直接寫出點N的坐標(biāo) 若不存在 請說明理由 1 求拋物線的解析式 2 若點P的橫坐標(biāo)為m 當(dāng)m為何值時 以O(shè) C P F為頂點的四邊形是平行四邊形 請說明理由 3 若存在點P 使 PCF 45 請直接寫出相應(yīng)的點P的坐標(biāo) 對應(yīng)訓(xùn)練 1 2017 新鄉(xiāng)模擬 如圖 已知拋物線y ax2 bx c a 0 的頂點坐標(biāo)為Q 2 1 且與y軸交于點C 0 3 與x軸交于A B兩點 點A在點B的右側(cè) 點P是該拋物線上的一動點 從點C沿拋物線向點A運動 點P與A不重合 過點P作PD y軸 交AC于點D 1 求該拋物線的解析式 2 當(dāng) ADP是直角三角形時 求點P的坐標(biāo) 3 在題 2 的結(jié)論下 若點E在x軸上 點F在拋物線上 問是否存在以A P E F為頂點的平行四邊形 若存在 求點F的坐標(biāo) 若不存在 請說明理由 1 解 1 拋物線的頂點為Q 2 1 設(shè)拋物線的解析式為y a x 2 2 1 將C 0 3 代入上式 得 3 a 0 2 2 1 a 1 y x 2 2 1 即y x2 4x 3 2 分兩種情況 當(dāng)點P1為直角頂點時 點P1與點B重合 令y 0 得x2 4x 3 0 解得x1 1 x2 3 點A在點B的右邊 B 1 0 A 3 0 P1 1 0 設(shè)D2 x x 3 P2 x x2 4x 3 則有 x 3 x2 4x 3 0 即x2 5x 6 0 解得x1 2 x2 3 舍去 當(dāng)x 2時 y x2 4x 3 22 4 2 3 1 P2的坐標(biāo)為P2 2 1 即為拋物線頂點 P點坐標(biāo)為P1 1 0 P2 2 1 對應(yīng)訓(xùn)練 1 2017 甘肅 如圖 已知二次函數(shù)y ax2 bx 4的圖象與x軸交于點B 2 0 點C 8 0 與y軸交于點A 1 求二次函數(shù)y ax2 bx 4的表達式 2 連接AC AB 若點N在線段BC上運動 不與點B C重合 過點N作NM AC 交AB于點M 當(dāng) AMN面積最大時 求N點的坐標(biāo) 3 連接OM 在 2 的結(jié)論下 求OM與AC的數(shù)量關(guān)系 類型三二次函數(shù)與線段問題 2015 23 2012 23 2014 23 例4 2015 河南 如圖 邊長為8的正方形OABC的兩邊在坐標(biāo)軸上 以點C為頂點的拋物線經(jīng)過點A 點P是拋物線上點A C間的一個動點 含端點 過點P作PF BC于點F 點D E的坐標(biāo)分別為 0 6 4 0 連接PD PE DE 1 請直接寫出拋物線的解析式 2 小明探究點P的位置發(fā)現(xiàn) 當(dāng)P與點A或點C重合時 PD與PF的差為定值 進而猜想 對于任意一點P PD與PF的差為定值 請你判斷該猜想是否正確 并說明理由 3 小明進一步探究得出結(jié)論 若將 使 PDE的面積為整數(shù) 的點P記作 好點 則存在多個 好點 且使 PDE的周長最小的點P也是一個 好點 請直接寫出所有 好點 的個數(shù) 并求出 PDE周長最小時 好點 的坐標(biāo) 對應(yīng)訓(xùn)練 1 2017 赤峰 如圖 二次函數(shù)y ax2 bx c a 0 的圖象交x軸于A B兩點 交y軸于點D 點B的坐標(biāo)為 3 0 頂點C的坐標(biāo)為 1 4 1 求二次函數(shù)的解析式和直線BD的解析式 2 點P是直線BD上的一個動點 過點P作x軸的垂線 交拋物線于點M 當(dāng)點P在第一象限時 求線段PM長度的最大值 3 在拋物線上是否存在異于B D的點Q 使 BDQ中BD邊上的高為2 若存在求出點Q的坐標(biāo) 若不存在 請說明理由 解 1 拋物線的頂點C的坐標(biāo)為 1 4 可設(shè)拋物線解析式為y a x 1 2 4 點B 3 0 在該拋物線的圖象上 0 a 3 1 2 4 解得a 1 拋物線解析式為y x 1 2 4 即y x2 2x 3 點D在y軸上 令x 0可得y 3 D點坐標(biāo)為 0 3 可設(shè)直線BD解析式為y kx 3 把B點坐標(biāo)代入可得3k 3 0 解得k 1 直線BD解析式為y x 3 2 2017 蘇州 如圖 二次函數(shù)y x2 bx c的圖象與x軸交于A B兩點 與y軸交于點C OB OC 點D在函數(shù)圖象上 CD x軸 且CD 2 直線l是拋物線的對稱軸 E是拋物線的頂點 1 求b c的值 2 如圖 連接BE 線段OC上的點F關(guān)于直線l的對稱點F 恰好在線段BE上 求點F的坐標(biāo) 3 如圖 動點P在線段OB上 過點P作x軸的垂線分別與BC交于點M 與拋物線交于點N 試問 拋物線上是否存在點Q 使得 PQN與 APM的面積相等 且線段NQ的長度最小 如果存在 求出點Q的坐標(biāo) 如果不存在 說明理由 2 設(shè)點F的坐標(biāo)為 0 m 對稱軸為直線x 1 點F關(guān)于直線l的對稱點F 的坐標(biāo)為 2 m 由 1 可知拋物線解析式為y x2 2x 3 x 1 2 4 E 1 4 直線BE經(jīng)過點B 3 0 E 1 4 利用待定系數(shù)法可得直線BE的表達式為y 2x 6 點F在BE上 m 2 2 6 2 即點F的坐標(biāo)為 0 2- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中考數(shù)學(xué)二輪復(fù)習(xí) 專題二 解答重難點題型突破 題型六 二次函數(shù)與幾何圖形綜合題課件 中考 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 解答 難點 題型 突破 二次 函數(shù) 幾何圖形 綜合 課件
鏈接地址:http://italysoccerbets.com/p-8263702.html