購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢QQ:1304139763
存檔編碼:無無錫錫太太湖湖學(xué)學(xué)院院 2013 屆屆畢畢業(yè)業(yè)作作業(yè)業(yè)周周次次進(jìn)進(jìn)度度計計劃劃、檢檢查查落落實實表表 系別:信機(jī)系 班級:機(jī)械94 學(xué)生姓名:呂金勇 課題(設(shè)計)名稱:軸承保持架的沖壓模具設(shè)計 開始日期:2012年11月12日周次起止日期工作計劃、進(jìn)度每周主要完成內(nèi)容存在問題、改進(jìn)方法指導(dǎo)教師意見并簽字備 注1-32012年11月12日-2012年12月2日教師下達(dá)畢業(yè)設(shè)計任務(wù),學(xué)生初步閱讀資料,完成畢業(yè)設(shè)計開題報告。按照任務(wù)書要求查閱論文相關(guān)參考資料,填寫畢業(yè)設(shè)計開題報告書存在問題:對課題理解程度不夠,對其難點分析不夠,分析能力欠缺。改進(jìn)方法:在指導(dǎo)老師的幫助下,對課題有較深的了解。4-102012年12月3日-2013年1月20日指導(dǎo)專業(yè)實訓(xùn)機(jī)械設(shè)計綜合實訓(xùn)存在問題:機(jī)械部件設(shè)計不夠完善,缺少經(jīng)驗。改進(jìn)方法:了解機(jī)械設(shè)計的詳細(xì)過程。11-122013年1月21日-3月1日翻譯外文資料翻譯機(jī)械方面的外文資料存在問題:專業(yè)英文水平較低,無法正確翻譯專業(yè)詞匯。改進(jìn)方法:借助一些翻譯軟件、專業(yè)字典幫助翻譯提高翻譯準(zhǔn)確性性。132013年3月4日-3月8日軸承保持架沖模的工藝分析分析各種工序?qū)M合的優(yōu)缺點存在問題:缺乏設(shè)計經(jīng)驗,工序選擇不確定。改進(jìn)方法:通過比較決定最后方案。142013年3月11日-3月15日繪制裝配圖初步繪制拉深和落料裝配圖存在問題:零部件配合有錯誤。改進(jìn)方法:重新設(shè)計并繪制相關(guān)部件。152013年3月18日-3月22日繪制裝配圖修改完成拉深和落料裝配圖存在問題:不能完全體現(xiàn)沖模細(xì)節(jié)。改進(jìn)方法:繪制局部視圖,體現(xiàn)細(xì)節(jié)。162013年3月25日-3月29日零件部設(shè)計對兩套模具凹凸模尺寸計算存在問題:毛坯尺寸計算選擇方案。改進(jìn)方法:按表面積不變原則。172013年4月1日-4月5日繪制零件圖繪制兩套模具凹凸模存在問題:標(biāo)注尺寸不全,無圖紙標(biāo)號。改進(jìn)方法:檢查標(biāo)注,補全圖號。182013年4月8日-4月12日繪制零件圖繪制上下模存在問題:標(biāo)注尺寸不全,圖紙表示不全面。改進(jìn)方法:檢查標(biāo)注,繪制局部剖圖。192013年4月15日-4月20日繪制零件圖繪制導(dǎo)料板,卸料板,固定板存在問題:標(biāo)注尺寸不全,圖紙表示不全面。改進(jìn)方法:檢查標(biāo)注,繪制局部剖圖。202013年4月22日-4月27日設(shè)計說明書(論文)、摘要和小結(jié)編寫完成設(shè)計說明書(論文)、摘要和小結(jié)存在問題:說明書的格式不規(guī)范,摘要不合理要求等。改進(jìn)方法:根據(jù)畢業(yè)設(shè)計的規(guī)范要求更改,重新排版。212013年4月29日-5月3日設(shè)計說明書(論文)、摘要和小結(jié)編寫優(yōu)化說明說、編寫參考資料、附錄存在問題:參考資料、附錄格式不規(guī)范。改進(jìn)方法:根據(jù)畢業(yè)設(shè)計的規(guī)范要求更改,重新按要求編寫摘要。222013年5月6日-5月10日修改設(shè)計說明書(論文)格式修改設(shè)計說明書開題報告格式存在問題:附錄格式不規(guī)范,摘要英文不合理要求等。改進(jìn)方法:根據(jù)畢業(yè)設(shè)計的規(guī)范要求更改。232013年5月13日-5月17日上交資料、準(zhǔn)備答辯整理所有資料,打印后上交,準(zhǔn)備答辯按學(xué)院要求整理并裝訂242013年5月20日-5月25日 說明:1、“工作計劃、進(jìn)度”、“指導(dǎo)教師意見并簽字”由指導(dǎo)教師填寫,“每周主要完成內(nèi)容”,“存在問題、改進(jìn)方法”由學(xué)生填寫。2、本表由各系妥善歸檔,保存?zhèn)洳椤V艽纹鹬谷掌诠ぷ饔媱潯⑦M(jìn)度每周主要完成內(nèi)容存在問題、改進(jìn)方法指導(dǎo)教師意見并簽字備 注編 號 無錫太湖學(xué)院 畢 業(yè) 設(shè) 計 論 文 相 關(guān) 資 料 題目 軸承保持架沖壓模具設(shè)計 機(jī) 電 系 機(jī) 械 工 程 及 自 動 化 專 業(yè) 學(xué) 號 0923181 學(xué)生姓名 呂金勇 指導(dǎo)教師 黃敏 職稱 副教授 2013 年 5 月 25 日 無錫太湖學(xué)院 畢 業(yè) 設(shè) 計 論 文 開 題 報 告 題目 軸承保持架沖壓模具設(shè)計 機(jī) 電 系 機(jī) 械 工 程 及 自 動 化 專 業(yè) 學(xué) 號 0923181 學(xué)生姓名 呂金勇 指導(dǎo)教師 黃敏 職稱 副教授 2012 年 11 月 25 日 課題來源 自擬 科學(xué)依據(jù) 包括課題的科學(xué)意義 國內(nèi)外研究概況 水平和發(fā)展趨勢 應(yīng) 用前景等 1 課題科學(xué)意義 隨著與國際接軌的腳步日益放慢 市場競爭的日益加劇 人們對模具的各種要求也 不斷的加大 可以說模具制造技術(shù)是用來衡量一個國家工業(yè)發(fā)展水平的重要標(biāo)志 則現(xiàn) 階段的工業(yè)生產(chǎn)中 模具是一種非常重要的工藝裝備 其在各個行業(yè)中也演繹著非常 重要的角色 其運用于汽車 機(jī)械 航天 航空 輕工 電子 電器 儀表等行業(yè) 在我國的模具行業(yè)中有 50 的是沖壓模具 足以看出沖壓模具之重要 所以現(xiàn)階段對 于沖壓模具的研究也是非常有必要的 軸承保持架沖壓模具的研究狀況及其發(fā)展前景 隨著計算機(jī)技術(shù)的發(fā)展和普及 沖壓模具也基本實現(xiàn)了計算機(jī)化 其中使用最多 的是 cad 軟件 抽高壓模具的計算機(jī)化也是日益發(fā)展趨勢下不可避免的 近些年來各 種多軸數(shù)控機(jī)床 激光切割機(jī)床數(shù)控雕刻機(jī)床等等紛紛面世 這些設(shè)備在提高模具的 數(shù)量 規(guī)模和制造能力上的作用是不可估量的 還有其中快速成形技術(shù)和快速模具技 術(shù)這兩種先進(jìn)的制造技術(shù)也越來越廣泛的應(yīng)用于模具行業(yè) 中國的模具行業(yè)每年都保持著 25 的增長率 其行業(yè)的生產(chǎn)能力也僅次于美國日本 位列世界第三 其行業(yè)生產(chǎn)能力約占世界總量的 10 然而 與國際先進(jìn)水平相比 中國的模具行業(yè)的差距不僅表現(xiàn)在精度差距大 交貨周 期長等方面 模具壽命也只有國際先進(jìn)水平的 50 左右 大型 精密 技術(shù)含量高 的轎車覆蓋件沖壓模具和精密沖裁模具是現(xiàn)階段最需要解決的問題 綜上由于市場需 求模具的現(xiàn)階段發(fā)展快速 應(yīng)用廣其前景也是也是非??春玫?研究內(nèi)容 了解沖壓加工的工作原理 國內(nèi)外的研究發(fā)展現(xiàn)狀 完成軸承保持架沖壓模具的總體方案設(shè)計 完成有關(guān)零部件的選型計算 結(jié)構(gòu)強度校核及液壓系統(tǒng)設(shè)計 熟練掌握有關(guān)計算機(jī)繪圖軟件 并繪制裝配圖和零件圖紙 折合 A0 紙不少于 3 張 完成設(shè)計說明書的撰寫 并翻譯外文資料 1 篇 擬采取的研究方法 技術(shù)路線 實驗方案及可行性分析 沖壓是一種利用壓力加工的方法 就是壓力機(jī)上裝上模具對材料施加壓力 使材 料分離或者變形形成合格的所需產(chǎn)品 沖壓模具材料的確定是一開始必須要確認(rèn)的 其次是沖壓模具的結(jié)構(gòu)設(shè)計分沖壓 工藝的確定和模具結(jié)構(gòu)的設(shè)計兩個方面 則需從這兩個方面入手 最后是對模具的壓 力計算還有軟件模擬 研究計劃及預(yù)期成果 研究計劃 2012 年 11 月 17 日 2013 年 1 月 13 日 按照任務(wù)書要求查閱論文相關(guān)參考資料 填寫 畢業(yè)設(shè)計開題報告書 學(xué)習(xí)并翻譯一篇與畢業(yè) 設(shè)計相關(guān)的英文材料 2013 年 1 月 11 日 2013 年 3 月 5 日 指導(dǎo)員實訓(xùn) 2013 年 3 月 8 日 2013 年 3 月 14 日 查閱與設(shè)計有關(guān)的參考資料不少于 10 篇 其中 外文不少于 5 篇 翻譯機(jī)械方面的外文資料 2013 年 3 月 15 日 2013 年 3 月 21 日 軸承保持架工藝分析 2013 年 3 月 22 日 2013 年 4 月 11 日 初步繪制裝配圖和修改完成 2013 年 4 月 12 日 2013 年 4 月 25 日 對凹凸模尺寸計算 繪制凹凸模及各零件 2013 年 4 月 26 日 2013 年 5 月 21 日 繪制上下模及其各零件 完成設(shè)計說明書 論 文 摘要和小結(jié) 修改設(shè)計說明書開題報告格式 整理所有資料 打印后上交 準(zhǔn) 備答辯 預(yù)期成果 特色或創(chuàng)新之處 沖模的使用便于生產(chǎn)自動化 操作簡單 生產(chǎn)率提高 減少制作軸承保持架的材料 已具備的條件和尚需解決的問題 已找到大量相關(guān)資料文獻(xiàn) 對軸承保持架零件有相關(guān)認(rèn)識 沖壓工藝的加工工序 指導(dǎo)教師意見 指導(dǎo)教師簽名 年 月 日 教研室 學(xué)科組 研究所 意見 教研室主任簽名 年 月 日 系意見 主管領(lǐng)導(dǎo)簽名 年 月 日 英文原文 Stress Analysis of Stamping Dies J Mater Shaping Technoi 1990 8 17 22 9 1990 Springer Verlag New York Inc R S R a o Abstract Experimental and computational procedures for studying deflections flit andalignment characteristics of a sequence of stamping dies housed in a transfer press are pre sented Die loads are actually measured at all the 12 die stations using new load monitors and used as input to the computational procedure A typical stamping die is analyzed using a computational code MSC NASTRAN based on finite element method The analysis is then extended to the other dies especially the ones where the loads are high Stresses and deflections are evaluated in the dies for the symmetric and asymmetric loading conditions Based on our independent die analysis stresses and deflections are found to be reasonably well within the tolerable limits However this situation could change when the stamping dies are eventually integrated with the press as a total system which is the ultimate goal of this broad research program INTRODUCTION Sheet metal parts require a series of operations such as shearing drawing stretching bending and squeezing All these operations are carried out at once while the double slide mechanism descends to work on the parts in the die stations housed in a transfer press 1 Material is fed to the press as blanks from a stock feeder In operation the stock is moved from one station to the next by a mechanism synchronized with the motion of the slide Each die is a separate unit which may be independently adjusted from the main slide An automotive part stamped from a hot rolled steel blank in 12 steps without any intermediate anneals is shown in Figure 1 Transfer presses are mainly used to produce different types of automotive and aircraft parts and home appliances The economic use of transfer presses depends upon quantity production as their usual production rate is 500 to 1500 parts per hour 2 Although production is rapid in this way close tolerances are often difficult to achieve Moreover the presses produce a set of conditions for off center loads owing to the different operations being performed simultaneously in several dies during each stroke Thus the forming load applied at one station can affect the alignment and general accuracy of the operation being performed at adjacent stations Another practical problem is the significant amount of set up time involved to bring all the dies into proper operation Hence the broad goal of this research is to study the structural characteristics of press and dies combination as a total system In this paper experimental and computational procedures for investigating die problems are presented The analysis of structural characteristics of the transfer press was pursued separately 3 A transfer press consisting of 12 die stations was chosen for analysis Typical die problems are excessive deflections tilt and misalignment of the upperand lower die halves Inadequate cushioning and offcenter loading may cause tilt and misalignment of the dies Tilt and excessive deflections may also be caused by the lack of stiffness of the die bolster and the die itself Part quality can be greatly affected by these die problems There are a lot of other parameters such as the die design friction and lubrication along the die work interface speed etc that play a great role in producing consistently good parts Realistically the analysis should be carded out by incorporating the die design and the deforming characteristics of the work material such as the elastic plastic work hardening properties In this preliminary study the large plastic deformation of the workpiece was not considered for the reasons mentioned below Large deformation modeling of a sheet stretching process was carded out using the computational code based on an elastic plastic work hardening model of the deformation process 4 Laboratory experiments were conducted on various commercial materials using a hemispherical punch The coefficient of friction along the punch sheet interface was actually measured in the experiment and used as a prescribed boundary to the numerical model Although a good solution was obtained it was realized that the numerical analysis was very sensitive to the frictional conditions along the interface In the most recent work a new friction model based on the micromechanics of the asperity contact was developed 5 In the present problem there are several operations such as deep drawing several reduction drawing operations and coining which are performed using complex die geometries The resources and the duration of time were not adequate to study these nonlinear problems Hence the preliminary study was limited to die problems basedon linear stress analysis A detailed die analysis was carried out by using MSC NASTRAN code based on finite ele mentmethod Die loads were measured at all the stations using new load monitors Such measured data were used in the numerical model to evaluate stresses and deflections in the dies for normal operating conditions and for asymmetric loading conditions Asymmetric loading conditions were created in the analysis by tilting the dies In real practice it is customary to pursue trial and error procedures such as placing shims under the die or by adjusting the cushion pressure to correct the die alignment problems Such time consuming tasks can be reduced or even eliminated using the computational and experimental procedures presented here DIE GEOMETRY AND MATERIALS The design of metal stamping dies is an inexact process There are considerable trial and error adjustments during die tryout that are often required to finish the fabrication of a die that will produce acceptable parts It involves not only the proper selection of die materials but also dimensions In order to withstand the pressure a die must have proper cross sectional area and clearances Sharp comers radii fillets and sudden changes in the cross section can have deleterious effects on the die life In this work the analysis was done on the existing set of dies The dies were made of high carbon high chromium tool steel The hardness of this tool steel material is in the range of Rockwell C 57 to 60 Resistance to wear and galling was greatly improved by coating the dies with titanium nitride and titanium carbide The dies were supported by several other steel holders made of alloy steels such as SAE 4140 The geometry of a typical stamping die is axisymmetric but it varies slightly from die to die depending on the operation Detailed information about geometry andmaterials of a reduction drawing die station number 4 was gathered from blueprints It was reproducedin three dimensional geometry using a preprocessor PATRAN One quadrant of the die is shown in Figure2 The data including geometry and elastic properties of the die material were fed to the numerical model The work material used was hot rolled aluminumkilled steel SAE 1008 A K Steel and the blank thickness was about 4 5 ram Stampings used in unexposed places or as parts of some deisgn where fine finish is not essential are usually made from hot rolled steel The automotive part produced in this die set is a cover for a torque converter A principal advantage of aluminum killed steel is its minimum strain aging EXPERIMENTAL PROCEDURES As mentioned earlier this research involved monitoting of die loads which were to be used in the numerical model to staldy the structural characteristicsof dies The other advantage is to avoid overloadingthe dies in practice Off center loading can be detected and also set up time can be reduced Thus any changes in the thickness of stock dulling of the die unbalanced loads or overloadings can be detected using die load monitors Strain gage based fiat load cells made of high grade tool steel material were fabricated and supplied by IDC Corporation Four identical load cells were embedded in a thick rectangular plate as shown in Figure 3 They were calibrated both in the laboratory and in the plant The plate was placed on the top of the die The knockout pin slips through the hole in the plate Six such plates were placed on each of six dies In this way 24 readings can be obtained at a given time Then they were shifted to the other six dies for complete data All the 12 die loads are presented in Table 1 COMPUTATIONAL PROCEDURES Linear static analysis using finite element method wasused to study the effect of symmetric and asymmetric loading for this problem A finite element model of die station 4 was created using the graphical preprocessor PATRAN and the analysis was carried outusing the code MSC NASTRA N The code has a wide T a b l e I Die Loads Die Station Load Number kN 1 356 2 641 3 214 4 356 5 854 6 712 7 285 8 32O 9 2349 10 1139 11 214 12 2100 spectrum of capabilities of which linear static analysis is discussed here The NASTRAN code initially generates a structural matrix and then the stiffness and the mass matrices from the data in the input file The theoretical formulations of a static structural problem by the displacement method can be obtained from the references 6 The unknowns are displacements and are solved for the appropriate boundary conditions Strains are obtained from displacements Then they are converted into stresses by using elastic stress strain relationships of the die material The solution procedure began with the creation of die geometry using the graphical preprocessor PATRAN The solution domain was divided into appropriate hyper patches This was followed by the generation of nodes which were then connected by elements Solid HEXA elements with eight nodes were used for this problem The nodes and elements were distributed in such a way that a finer mesh was created at the critical region of the die sheet metal interface and a coarser mesh elsewhere The model was then optimized by deleting the unwanted nodes The element connectivities were checked By taking advantage of the symmetry only one quarter of the die was analyzed In the asymmetric case half of the die was considered for analysis Although in practice the load is applied at the top of the die for the purpose of proper representation of the boundary conditions to the computational code reaction forces were considered for analysis The displacement and force boundary conditions are shown for the two cases inFigure 4 As mentioned earlier sheet metal was not modeled in this preliminary research As shown in Figure 4 a the nodes on the top surface of the die were constrained stationary surface and the measured load of 356 kN was equally distributed on the contact nodes at the workpiece die interface Similar boundary conditions for the punch are shown in Figure 4 b It is noticeable that fewer nodes are in contact with the sheet metal due to the die tilt for the asymmetric loading case as shown in Figure 4 c In real practice the pressure actually varies along the die contact surface Since the actual distribution was not known uniform distribution was considered in the present analysis DISCUSSION OF RESULTS As described in the earlier section the numerical analysis of die Station 4 both the die and punch was performed using the code MSC NASTRAN Two cases were considered namely a symmetric loading and b asymmetric loading Fig 4 Boundary conditions A Symmetric case onequadrant of the die B Symmetric case one quadrant ofnthe punch C Asymmetric case half of the die Symmetric Loading Numerical analysis of the die was carried out for a measured load o f 356 kN as distributed equally in Figure 4 a The major displacements in the loading direction are shown in Figure 5 a These displacement contours can be shown in various colors to represent different magnitudes The m aximum displacement value is 0 01 m m for a uniformly distributed load of 356 kN The corresponding critical stress is very small 8 4 MPa in the y direction and 30 MPa in the x direction The calculated displacements and stresses at the surrounding elements and nodes were of the same order but they decreased in magnitude at the nodes away from this critical region Thus the die was considered very rigid under this loading condition Symmetric loading was applied to the punch and the numerical analysis was carried out separately The displacement values in the protruding region of the punch were high compared to the die The maximum displacement was 0 08 m m It should be noted that the displacement values in this critical range of the punch were of the same order ranging from 0 05 mm to 0 08 ram Although the load acting on the punch bottom half was the same as the die upper half that is 356 kN the values of displacements and stresses were higher in the punch because of the differences in the geometry This is especially true for the protruding part of the punch The corresponding maxim u m stress was 232 MPa This part of the punch is still in the elastic range as the yield strength of tool steel is approximately 1034 MPa The critical stress value might be varied for different load distributions Since the actual distribution of the load was not known the load was distributed equally on all nodes As the die upper half is operating in a region which is extremely safe a change in the load distribution may not produce any high critical stresses in the die Although higher loads are applied at other die stations see Table 1 it is concluded that the critical stresses are not going to be significantly higher due to the appropriate changes in the die geometries Asymmetric Loading For the purpose of analysis an asymmetric loading situation was created by tilting the die Thus only 15 nodes were in contact with the workpiece compared to 40 nodes for the symmetric loading case As shown in Figure 4 c a 356 kN load was uniformly distributed over the 15 nodes that were in contact with the workpiece Although the pressure was high because of the geometry at the location where the load was acting the critical values of displacement and stress were found to be similar to the symmetric case The predicted displacement and stress values were not significantly higher than the values predicted for the symmetric case Fig 5 Displacement contours in the loading direction A Symmetric case one quadrant of the die B Symmetric case one quadrant of the punch C Asymmetric case half of the die CONCLUSIONS In this preliminary study we have demonstrated the capabilities of the computational procedure based on finite element method to evaluate the stresses and deflections within the stamping dies for the measured loads The dies were found to be within the tolerable elastic limits for both symmetric and asymmetric loading conditions Thus the computational procedure can be used to study the tilt and alignment characteristics of stamping dies In general the die load monitors are very useful not only for analysis but also for on line tonnage control Future research involves the integration of the structural analysis of stamping dies with that of the transfer press as a total system ACKNOWLEDGMENTS Professor J G Eisley W J Anderson and Mr D Londhe are thanked for their comments on this paper REFERENCES 1 R S Rao and A Bhattacharya Transfer Process De flection Parallelism and Alignment Characteristics Technical Report January 1988 Department of Mechanical Engineering and Applied Mechanics the University of Michigan Ann Arbor 2 Editors of American Machinist Metalforming Modem Machines Methods and Tooling for Engineers and Operating Personnel McGraw Hill Inc 1982 pp 47 50 3 W J Anderson J G Eisley and M A Tessmer Transfer Press Deflection Parallelism and Alignment Characteristics Technical Report January 1988 Department of Aerospace Engineering the University of Michigan Ann Arbor 4 B B Yoon R S Rao and N Kikuchi Sheet Stretching A Theoretical Experimental Comparison International Journal of Mechanical Sciences Vol 31 No 8 pp 579 590 1989 5 B B Yoon R S Rao and N Kikuchi Experimental and Numerical Comparisons of Sheet Stretching Using a New Friction Model ASME Journal of Engineering Materials and Technology in press 6 MSX NASTRAN McNeal Schwendler Corporation 22 9 J Materials Shaping Technology Vol 8 No 1 1990 中文譯文 沖壓模具的受力分析 R S Rao J Mater Shaping Technol 1990 8 17 22 1990 施普林格出版社紐約公司 文章摘要 我們用一臺多工位自動壓力機(jī)來研究沖壓模具的變形過程 其中包括突然 換位 校準(zhǔn)特征等一系列的過程 模具載荷實驗實際上是對 12 個工位使用新的負(fù)載監(jiān)控后 的測量 其測量的數(shù)值將會輸入計算程序 再基于有限元法對沖壓模具進(jìn)行分析 其中有 限元法需要用到一個計算代碼和 MSC NASTRAN 分析軟件 這樣后再將分析擴(kuò)展到其他的模 具 特別是那些高負(fù)載的沖模 應(yīng)力和變形是用來評估模具載荷對稱還是非對稱的條件 根據(jù)我們對模具獨立的分析發(fā)現(xiàn)在模具的應(yīng)力和變形只要是輕度的那這個模具還是好的 然而這種情況在當(dāng)沖壓模具最終和壓力機(jī)成為一個整體后也是可能會變化的 簡介 鈑金零件需要拉伸 剪切 彎曲 和擠壓等一系列的操作 所有這些操作的進(jìn)行都會 被安置在多工位自動壓力機(jī)上 材料是通過給料機(jī)送入壓坯 在操作中材料通過同步機(jī)制 的滑塊運動從一個位置運動到下一個位置 在生產(chǎn)中每一個模具都是一個獨立的單位 其 都可以在主滑動上進(jìn)行單個調(diào)整 如圖 1 所示一個用熱軋鋼板做的汽車零件其不需要退火 的 12 個加工步驟 圖 1 一個沖壓零件 壓力機(jī)主要用于生產(chǎn)不同類型的汽車和飛機(jī)零部件和家電 不同的多工位自動壓力機(jī) 其生產(chǎn)速率大約在 500 到 1500 每小時 雖然以這種速度生產(chǎn)是快速的 但往往緊密的公差 尺寸很難實現(xiàn) 此外 機(jī)器在每個沖程中在偏心載荷的作用下同時在幾個模具上進(jìn)行不同 的操作 因此 在某一個位置上的沖壓載荷會影響工作線上其他操作的執(zhí)行 另外一個實 踐問題就是把所有的模具正確的安裝到壓力機(jī)上的大量的時間問題 因此 本研究的目標(biāo) 是研究當(dāng)壓力機(jī)和模具聯(lián)合作為一個整體時結(jié)構(gòu)特點 在本文中 將會展示那些研究模具 問題的實驗和計算過程 還有單獨對壓力機(jī)結(jié)構(gòu)特點的分析 我們將會用一種由 12 個工位組成的壓力機(jī)來分析 一般典型的模具問題有過度變形 傾斜 和上下半模錯位 不適當(dāng)?shù)木彌_和偏心載荷會引起模具的傾斜和錯位 傾斜和過度 變形也可能是由模套與模具本身的剛度不足而造成的 這些模具問題將會對所生產(chǎn)的部分 產(chǎn)品有很大的影響 還有很多其他的參數(shù) 如模具設(shè)計 摩擦與潤滑沿模具的工作界面的 摩擦 速度 等等 這些問題的解決將會在生產(chǎn)中發(fā)揮很大的作用 實際上 分析應(yīng)在結(jié) 合模具設(shè)計及工作材料的變形特性下進(jìn)行 譬如彈塑性的硬化加工 在這個研究中 工件 的大面積塑性變形不作考慮 大面積的拉伸變形過程是由于對建模過程的彈塑性硬化的計算代碼的錯誤 實驗室實 驗進(jìn)行的各種商業(yè)材料使用的半球形沖頭 沿穿孔板的界面摩擦系數(shù)實際上是在實驗測量 和作為邊界的數(shù)值模型 雖然得到了很好的解決方案 實現(xiàn)了數(shù)值分析是沿界面摩擦條件 非常敏感 在最近的工作中 一種新的基于細(xì)觀接觸摩擦模型被發(fā)明 5 在目前的問題 在使用復(fù)雜的幾何結(jié)構(gòu)的模具 有幾個操作如拉深 少數(shù)減少的繪圖操作 和模壓 資源 的持續(xù)時間都不足以研究這些非線性問題 因此 初步的研究僅限于模具基于線性應(yīng)力分 析問題 基于有限元方法通過利用 MSC NASTRAN 代碼對模具進(jìn)行了一個詳細(xì)的分析 在所有使 用新的負(fù)載監(jiān)控站對模具載荷進(jìn)行了測定 這樣的測量數(shù)據(jù)運用在數(shù)值模型中來評估模具 的正常工作條件下和非對稱載荷狀況的應(yīng)力和變形 在模具傾斜中非對稱載荷也是應(yīng)被分 析的 在實踐中 人們習(xí)慣于追求的試驗和錯誤的程序 如放置墊片在模具或調(diào)整墊壓模 對準(zhǔn)正確的問題 這種耗時的任務(wù) 可以在這里提供的計算和實驗程序減少甚至消除使用 模具的形狀和材料 金屬沖壓模具的設(shè)計是一個不精確的過程 在試模中有相當(dāng)多的試驗和錯誤 往往需 要進(jìn)行可接受的零件調(diào)整來完成一個模具 它不僅涉及到模具材料的正確選擇 而且還有 尺寸 為了能夠承受壓力 模具必須有適當(dāng)?shù)臋M截面積與間隙 半徑 內(nèi)圓角 和橫截面 的突變會對模具壽命產(chǎn)生有害的影響 在這項工作中 對模具的現(xiàn)有的設(shè)置進(jìn)行了分析 模具是用高碳 高鉻工具鋼做的 這個工具鋼材料的硬度在羅克韋爾 C 57 至 60 的范 圍內(nèi) 通過涂層模具氮化鈦和碳化鈦大大提高耐磨性 模具的制成還有其他幾種合金鋼如 SAE 4140 一個典型的沖壓模具的幾何形狀是軸對稱的但根據(jù)操作不同每個模具也是有略 微不同的 關(guān)于減少拉深模具的幾何形狀和材料的詳細(xì)信息被收集于設(shè)計圖中 通過使用 一個預(yù)處理程序轉(zhuǎn)載成 3d 幾何圖形 Patran 一個象限的模具 如圖 2 所示 數(shù)據(jù)包括模 具材料的幾何形狀和模具的彈性性質(zhì) 所使用的工作材料是鋁合金 SAE 1008 鋼的厚度約為 4 5 的 RAM 沖壓件在陰暗的 地方使用或一些不必要完好完成的部分通常是用熱軋鋼板來制作 該模具生產(chǎn)的汽車是一 個
鏈接地址:http://italysoccerbets.com/p-7839975.html