《【創(chuàng)新方案】高考數(shù)學(xué) 理一輪突破熱點(diǎn)題型:第5章 第3節(jié) 等比數(shù)列及其前n項(xiàng)和》由會(huì)員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】高考數(shù)學(xué) 理一輪突破熱點(diǎn)題型:第5章 第3節(jié) 等比數(shù)列及其前n項(xiàng)和(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第三節(jié) 等比數(shù)列及其前n項(xiàng)和
考點(diǎn)一
等比數(shù)列的判定與證明
[例1] 已知數(shù)列{an}的前n項(xiàng)和為Sn, a1=1,Sn+1=4an+2(n∈N*),若bn=an+1-2an,求證:{bn}是等比數(shù)列.
[自主解答] an+2=Sn+2-Sn+1=4an+1+2-4an-2=4an+1-4an.
====2,
∵S2=a1+a2=4a1+2,∴a2=5.∴b1=a2-2a1=3.
∴數(shù)列{bn}是首項(xiàng)為3,公比為2的等比數(shù)列.
【互動(dòng)探究】
保持本例條件不變,若cn=,證明:{cn}是等比數(shù)列.
證明:由例題知,bn=3·2n-1=a
2、n+1-2an,∴-=3.
∴數(shù)列是首項(xiàng)為2,公差為3的等差數(shù)列.
∴=2+(n-1)×3=3n-1,∴an=(3n-1)·2n-2,∴cn=2n-2.
∴==2.∴數(shù)列{cn}為等比數(shù)列.
【方法規(guī)律】
等比數(shù)列的判定方法
證明一個(gè)數(shù)列為等比數(shù)列常用定義法與等比中項(xiàng)法,其他方法只用于選擇、填空題中的判定;若證明某數(shù)列不是等比數(shù)列,則只要證明存在連續(xù)三項(xiàng)不成等比數(shù)列即可.
已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),則以
3、下結(jié)論一定正確的是( )
A.?dāng)?shù)列{bn}為等差數(shù)列,公差為qm
B.?dāng)?shù)列{bn}為等比數(shù)列,公比為q2m
C.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm2
D.?dāng)?shù)列{cn}為等比數(shù)列,公比為qmm
解析:選C bn=am(n-1)+1·(1+q+q2+…+qm-1),==qm,故數(shù)列{bn}為等比數(shù)列,公比為qm,選項(xiàng)A、B均錯(cuò)誤;cn=a·q1+2+…+(m-1),==m=(qm)m=qm2,故數(shù)列{cn}為等比數(shù)列,公比為qm2,D錯(cuò)誤,故選C.
高頻考點(diǎn)
考點(diǎn)二 等比數(shù)列的基本運(yùn)算
1.等比數(shù)列的基本運(yùn)算是高考的常考內(nèi)容,題型既有選擇、填空題,也有解答
4、題,難度適中,屬中低檔題.
2.高考對(duì)等比數(shù)列的基本運(yùn)算的考查常有以下幾個(gè)命題角度:(1)化基本量求通項(xiàng);(2)化基本量求特定項(xiàng);(3)化基本量求公比;(4)化基本量求和.
[例2] (1)(20xx·新課標(biāo)全國(guó)卷Ⅱ)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+10a1,a5=9,則a1=( )
A. B.- C. D.-
(2)(20xx·浙江高考)設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項(xiàng)和為Sn.若S2=3a2+2,S4=3a4+2,則q=________.
(3)(20xx·湖北高考)已知等比數(shù)列{an}滿足:|a2-a3
5、|=10,a1a2a3=125.
①求數(shù)列{an}的通項(xiàng)公式;
②是否存在正整數(shù)m,使得++…+≥1?若存在,求m的最小值;若不存在,說(shuō)明理由.
[自主解答] (1)由已知條件及S3=a1+a2+a3,得a3=9a1,設(shè)數(shù)列{an}的公比為q,則q2=9.所以a5=9=a1·q4=81a1,得a1=.
(2)由S2=3a2+2,S4=3a4+2作差,可得a3+a4=3a4-3a2,即2a4-a3-3a2=0,所以2q2-q-3=0,解得q=或q=-1(舍).
(3)①設(shè)等比數(shù)列{an}的公比為q,
則由已知可得解得或
故an=×3n-1,或an=-5×(-1)n-1.
②若an
6、=×3n-1,則=×n-1,故是首項(xiàng)為,公比為的等比數(shù)列,
從而.
若an=(-5)×(-1)n-1,則=-(-1)n-1,故是首項(xiàng)為-,公比為-1的等比數(shù)列,
從而故<1.
綜上,對(duì)任何正整數(shù)m,總有<1.
故不存在正整數(shù)m,使得++…+≥1成立.
[答案] (1)C (2)
等比數(shù)列基本量運(yùn)算問(wèn)題的常見(jiàn)類(lèi)型及解題策略
(1)化基本量求通項(xiàng).求等比數(shù)列的兩個(gè)基本元素a1和q,通項(xiàng)便可求出,或利用知三求二,用方程求解.
(2)化基本量求特定項(xiàng).利用通項(xiàng)公式或者等比數(shù)列的性質(zhì)求解.
(3)化基本量求公比.利用等比數(shù)列的定義和性質(zhì),建立方程組求解.
(4)化基本量求和.直
7、接將基本量代入前n項(xiàng)和公式求解或利用等比數(shù)列的性質(zhì)求解.
1.(20xx·新課標(biāo)全國(guó)卷Ⅰ)設(shè)首項(xiàng)為1,公比的等比數(shù)列{an}的前n項(xiàng)和為Sn,則( )
A.Sn=2an-1 B.Sn=3an-2
C.Sn=4-3an D.Sn=3-2an
解析:選D 因?yàn)閍1=1,公比q=,所以an=n-1,
Sn==3=3-2n-1=3-2an.
2.已知等比數(shù)列{an}為遞增數(shù)列,且a=a10,2(an+an+2)=5an+1,則數(shù)列{an}的通項(xiàng)公式an=________.
解析:設(shè)數(shù)列{an}的首項(xiàng)為a1,公比為q,
∵a=
8、a10,2(an+an+2)=5an+1,
∴
①得a1=q,由由②知q=2或q=,又?jǐn)?shù)列{an}為遞增數(shù)列,∴a1=q=2,從而an=2n.
答案:2n
3.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.
解:(1)∵S1,S3,S2成等差數(shù)列,∴a1+(a1+a1q)=2(a1+a1q+a1q2).
由于a1≠0,故2q2+q=0,又q≠0,從而q=-.
(2)由已知可得a1-a12=3,故a1=4,從而Sn==.
考點(diǎn)三
等比數(shù)列的性質(zhì)
[例3] (1)已知等比數(shù)列{an}
9、中,a1+a2+a3=40,a4+a5+a6=20,則前9項(xiàng)之和等于( )
A.50 B.70 C.80 D.90
(2)已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=( )
A.7 B.5 C.-5 D.-7
[自主解答] (1)∵S3,S6-S3,S9-S6成等比數(shù)列,∴S3·(S9-S6)=(S6-S3)2,
又S3=40,S6=40+20=60,∴40(S9-60)=202,故S9=70.
(2)由已知得解得或
當(dāng)a4=4,a7=-2時(shí),易得a1=-8,a10=
10、1,從而a1+a10=-7;
當(dāng)a4=-2,a7=4時(shí),易得a10=-8, a1=1,從而a1+a10=-7.
[答案] (1)B (2)D
【方法規(guī)律】
等比數(shù)列常見(jiàn)性質(zhì)的應(yīng)用
等比數(shù)列性質(zhì)的應(yīng)用可以分為三類(lèi):(1)通項(xiàng)公式的變形;(2)等比中項(xiàng)的變形;(3)前n項(xiàng)和公式的變形.根據(jù)題目條件,認(rèn)真分析,發(fā)現(xiàn)具體的變化特征即可找出解決問(wèn)題的突破口.
1.記等比數(shù)列{an}的前n項(xiàng)積為T(mén)n(n∈N*),已知am-1·am+1-2am=0,且T2m-1=128,則m的值為( )
A.4 B.7 C.10 D.12
解析:選A 因?yàn)閧
11、an}是等比數(shù)列,所以am-1am+1=a,
又由am-1am+1-2am=0,可知am=2.
由等比數(shù)列的性質(zhì)可知前(2m-1)項(xiàng)積T2m-1=a,即22m-1=128,故m=4.
2.在等比數(shù)列{an}中,若a1·a2·a3·a4=1,a13·a14·a15·a16=8,則a41·a42·a43·a44=________.
解析:法一:a1·a2·a3·a4=a1·a1q·a1q2·a1q3=a·q6=1,①
a13·a14·a15·a16=a1q12·a1q13·a1q14·a1q15=a·q54=8,②
由②÷①,得=q48=8?q16=2,
又a41·a42·a43·a
12、44=a1q40·a1q41·a1q42·a1q43=a·q166=a·q6·q160=(a·q6)·(q16)10=1×210=1 024.
法二:由性質(zhì)可知,依次4項(xiàng)的積為等比數(shù)列,
設(shè)公比為q,
T1=a1·a2·a3·a4=1,T4=a13·a14·a16=8,
∴T4=T1·q3=1·q3=8,即q=2.
∴T11=a41·a42·a43·a44=T1·q10=210=1 024.
答案:1 024
———————————[課堂歸納——通法領(lǐng)悟]————————————————
2個(gè)注意點(diǎn)——應(yīng)用等比數(shù)列的公比應(yīng)注意的問(wèn)題
(1)由an+1=qan(q≠0),
13、并不能斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.
(2)在應(yīng)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1和q≠1分類(lèi)討論,防止因忽略q=1這一特殊情況而導(dǎo)致錯(cuò)誤.
4種方法——等比數(shù)列的判定方法
(1)定義法:若=q(q為非零常數(shù))或=q(q為非零常數(shù)且n≥2),則{an}是等比數(shù)列;
(2)等比中項(xiàng)法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N*),則數(shù)列{an}是等比數(shù)列;
(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成an=c·qn(c,q均是不為0的常數(shù),n∈N*),則{an}是等比數(shù)列;
(4)前n項(xiàng)和公式法:若數(shù)列{an}的前n項(xiàng)和Sn=k·qn-k(k為常數(shù)且k≠0,q≠0,1),則{an}是等比數(shù)列.
注意:前兩種方法也可用來(lái)證明一個(gè)數(shù)列為等比數(shù)列.