【新步步高】2016高考數(shù)學(xué)二輪專題突破 專題二 三角函數(shù)、解三角形與平面向量 第2講 三角變換與解三角形 理
《【新步步高】2016高考數(shù)學(xué)二輪專題突破 專題二 三角函數(shù)、解三角形與平面向量 第2講 三角變換與解三角形 理》由會員分享,可在線閱讀,更多相關(guān)《【新步步高】2016高考數(shù)學(xué)二輪專題突破 專題二 三角函數(shù)、解三角形與平面向量 第2講 三角變換與解三角形 理(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第2講 三角變換與解三角形 1.(2013·浙江)已知α∈R,sin α+2cos α=,則tan 2α等于( ) A. B. C.- D.- 2.(2015·重慶)若tan α=,tan(α+β)=,則tan β等于( ) A. B. C. D 3.(2014·福建)在△ABC中,A=60°,AC=4,BC=2,則△ABC的面積等于________. 4.(2014·江蘇)若△ABC的內(nèi)角滿足sin A+sin B=2sin C,則cos C的最小值是________. 正弦定理和余弦定理以及解三角形問題是高考的必考內(nèi)容,主要考查:1.邊和角
2、的計算;2.三角形形狀的判斷;3.面積的計算;4.有關(guān)的范圍問題.由于此內(nèi)容應(yīng)用性較強(qiáng),與實際問題結(jié)合起來進(jìn)行命題將是今后高考的一個關(guān)注點,不可輕視. 熱點一 三角恒等變換 1.三角求值“三大類型” “給角求值”、“給值求值”、“給值求角”. 2.三角函數(shù)恒等變換“四大策略” (1)常值代換:特別是“1”的代換,1=sin2θ+cos2θ=tan 45°等; (2)項的分拆與角的配湊:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等; (3)降次與升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦. 例1
3、 (1)已知sin(α+)+sin α=-,-<α<0,則cos(α+)等于( ) A.- B.- C. D. (2)(2014·課標(biāo)全國Ⅰ)設(shè)α∈(0,),β∈(0,),且tan α=,則( ) A.3α-β= B.2α-β= C.3α+β= D.2α+β= 思維升華 (1)三角變換的關(guān)鍵在于對兩角和與差的正弦、余弦、正切公式,二倍角公式,三角恒等變換公式的熟記和靈活應(yīng)用,要善于觀察各個角之間的聯(lián)系,發(fā)現(xiàn)題目所給條件與恒等變換公式的聯(lián)系,公式的使用過程要注意正確性,要特別注意公式中的符號和函數(shù)名的變換,防止出現(xiàn)張冠李戴的情況.(2)求角問題要注意角的范圍,要根
4、據(jù)已知條件將所求角的范圍盡量縮小,避免產(chǎn)生增解. 跟蹤演練1 (1)(2015·重慶)若tan α=2tan ,則等于( ) A.1 B.2 C.3 D.4 (2)-等于( ) A.4 B.2 C.-2 D.-4 熱點二 正弦定理、余弦定理 (1)正弦定理:在△ABC中,===2R(R為△ABC的外接圓半徑).變形:a=2Rsin A,sin A=,a∶b∶c=sin A∶sin B∶sin C等. (2)余弦定理:在△ABC中, a2=b2+c2-2bccos A; 變形:b2+c2-a2=2bccos A,cos A=. 例2 (2015·課標(biāo)全
5、國Ⅱ)如圖,在△ABC中,D是BC上的點,AD平分∠BAC,△ABD面積是△ADC面積的2倍. (1)求; (2)若AD=1,DC=,求BD和AC的長. 思維升華 關(guān)于解三角形問題,一般要用到三角形的內(nèi)角和定理,正弦、余弦定理及有關(guān)三角形的性質(zhì),常見的三角變換方法和原則都適用,同時要注意“三統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”,這是使問題獲得解決的突破口. 跟蹤演練2 (1)(2015·課標(biāo)全國Ⅰ)在平面四邊形ABCD中,∠A=∠B=∠C=75°,BC=2,則AB的取值范圍是________. (2)(2
6、014·江西)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.若c2=(a-b)2+6,C=,則△ABC的面積是( ) A.3 B. C. D.3 熱點三 解三角形與三角函數(shù)的綜合問題 解三角形與三角函數(shù)的綜合是近幾年高考的熱點,主要考查三角形的基本量,三角形的面積或判斷三角形的形狀. 例3 (2015·山東)設(shè)f(x)=sin xcos x-cos2. (1)求f(x)的單調(diào)區(qū)間; (2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若f =0,a=1,求△ABC面積的最大值. 思維升華 解三角形與三角
7、函數(shù)的綜合題,要優(yōu)先考慮角的范圍和角之間的關(guān)系;對最值或范圍問題,可以轉(zhuǎn)化為三角函數(shù)的值域來求. 跟蹤演練3 已知函數(shù)f(x)=2cos (cos-sin),在△ABC中,有f(A)=+1. (1)若a2-c2=b2-mbc,求實數(shù)m的值; (2)若a=1,求△ABC面積的最大值. 1.在△ABC中,BC=1,B=,△ABC的面積S=,則sin C等于( ) A. B. C. D. 2.已知函數(shù)f(x)=sin ωx·cos ωx-cos2ωx(ω>0)的最小正周期為. (1)求ω的值; (2)在△ABC中,sin
8、 B,sin A,sin C成等比數(shù)列,求此時f (A)的值域. 提醒:完成作業(yè) 專題二 第2講 二輪專題強(qiáng)化練 專題二 第2講 三角變換與解三角形 A組 專題通關(guān) 1.已知α∈(,π),sin(α+)=,則cos α等于( ) A.- B. C.-或 D.- 2.已知函數(shù)f(x)=4sin(+),f(3α+π)=,f(3β+)=-,其中α,β∈[0,],則cos(α-β)的值為( ) A. B. C. D. 3.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcos C+ccos B=asin A,則△ABC的形狀為( )
9、
A.銳角三角形 B.直角三角形
C.鈍角三角形 D.不確定
4.(2015·廣東)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若a=2,c=2,cos A=且b 10、=-,則a的值為________.
8.如圖,在一個塔底的水平面上的點A處測得該塔頂P的仰角為θ,由點A向塔底D沿直線行走了30 m到達(dá)點B,測得塔頂P的仰角為2θ,再向塔底D前進(jìn)10 m到達(dá)點C,又測得塔頂?shù)难鼋菫?θ,則塔PD的高度為________m.
9.(2015·浙江)在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知tan=2.
(1)求的值;
(2)若B=,a=3,求△ABC的面積.
10.已知f(x)=2sin(x-)-,現(xiàn)將f(x)的圖象向左平移個單位長度,再向上平移個單位長度,得到函數(shù)g(x)的圖象.
( 11、1)求f()+g()的值;
(2)若a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,a+c=4,且當(dāng)x=B時,g(x)取得最大值,求b的取值范圍.
B組 能力提高
11.(2015·溫州模擬)若α∈(0,),則的最大值為________.
12.(2015·湖北)如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)一山頂D在西偏北30°的方向上,行駛600 m后到達(dá)B處,測得此山頂在西偏北75°的方向上,仰角為30°,則此山的高度CD=________m.
13.在△ABC中,向量,的夾角為120°,=2,且AD=2,∠A 12、DC=120°,則△ABC的面積等于________.
14.(2015·四川)如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan =;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.
學(xué)生用書答案精析
第2講 三角變換與解三角形
高考真題體驗
1.C [∵sin α+2cos α=,
∴sin2α+4sin α·cos α+4cos2α=.
用降冪公式化簡得:4sin 2α=-3cos 2α,
∴tan 2α==-.故選C.]
2.A [tan β=tan[(α+ 13、β)-α]=
==.]
3.2
解析 如圖所示,在△ABC中,由正弦定理得=,
解得sin B=1,
所以B=90°,
所以S△ABC=×AB×2=××2=2.
4.
解析 由sin A+sin B=2sin C,
結(jié)合正弦定理得a+b=2c.
由余弦定理得cos C=
==
≥=,
故≤cos C<1,
且3a2=2b2時取“=”.
故cos C的最小值為.
熱點分類突破
例1 (1)C (2)B
解析 (1)∵sin(α+)+sin α=-,-<α<0,
∴sin α+cos α=-,
∴sin α+cos α=-,
∴cos(α+)=cos 14、αcos-sin αsin
=-cos α-sin α=.
(2)由tan α=
得=,
即sin αcos β=cos α+cos αsin β,
∴sin(α-β)=cos α=sin(-α).
∵α∈(0,),β∈(0,),
∴α-β∈(-,),-α∈(0,),
∴由sin(α-β)=sin(-α),
得α-β=-α,
∴2α-β=.
跟蹤演練1 (1)C (2)D
解析 (1)=
=
==
==3.
(2)-=-
==
==-4,故選D.
例2 解 (1)S△ABD=AB·ADsin∠BAD,
S△ADC=AC·ADsin∠CAD.
因為S△A 15、BD=2S△ADC,
∠BAD=∠CAD,
所以AB=2AC.
由正弦定理可得
==.
(2)因為S△ABD∶S△ADC=BD∶DC,所以BD=.
在△ABD和△ADC中,由余弦定理知
AB2=AD2+BD2-2AD·BDcos∠ADB,
AC2=AD2+DC2-2AD·DCcos∠ADC.
故AB2+2AC2=3AD2+BD2+2DC2=6,
由(1)知AB=2AC,所以AC=1.
跟蹤演練2 (1)(-,+) (2)C
解析 (1)如圖所示,延長BA與CD相交于點E,過點C作CF∥AD交AB于點F,則BF 16、=BC=2,
∴BF==-.
在等腰三角形ECB中,∠CEB=30°,∠ECB=75°,
BE=CE,BC=2,=,
∴BE=×=+.
∴- 17、x)的單調(diào)遞增區(qū)間是(k∈Z);
單調(diào)遞減區(qū)間是(k∈Z).
(2)由f=sin A-=0,得sin A=,
由題意知A為銳角,所以cos A=.
由余弦定理a2=b2+c2-2bccos A,
可得1+bc=b2+c2≥2bc,
即bc≤2+,且當(dāng)b=c時等號成立.
因此bcsin A≤.
所以△ABC面積的最大值為.
跟蹤演練3 解 (1)f(x)=2cos(·cos-sin)=2cos2-2sin·cos=+cos x-sin x
=+2sin(-x),
由f(A)=+1,
可得+2sin(-A)=+1,
所以sin(-A)=.
又A∈(0,π),所以-A∈( 18、-,),
所以-A=,即A=.
由a2-c2=b2-mbc及余弦定理,
可得==cos A=,
所以m=.
(2)由(1)知cos A=,則sin A=,
又=cos A=,
所以b2+c2-a2=bc≥2bc-a2,
即bc≤(2+)a2=2+,
當(dāng)且僅當(dāng)b=c時等號成立,
所以S△ABC=bcsin A≤,
即△ABC面積的最大值為.
高考押題精練
1.D [因為在△ABC中,BC=1,B=,△ABC的面積S=,所以S△ABC=BC·BA·sin B=,即×1×BA×=,解得BA=4.又由余弦定理,得AC2=BC2+BA2-2BC·BA·cos B,
即得AC= 19、,由正弦定理,得=,解得sin C=.]
2.解 (1)f(x)=sin 2ωx-(cos 2ωx+1)=sin(2ωx-)-,
因為函數(shù)f(x)的周期為T==,
所以ω=.
(2)由(1)知f(x)=sin(3x-)-,
易得f(A)=sin(3A-)-.
因為sin B,sin A,sin C成等比數(shù)列,
所以sin2A=sin Bsin C,
所以a2=bc,
所以cos A==≥=(當(dāng)且僅當(dāng)b=c時取等號),
因為0
20、].
二輪專題強(qiáng)化練答案精析
第2講 三角變換與解三角形
1.A [∵α∈(,π),∴α+∈(π,π),
∵sin(α+)=,
∴cos(α+)=-,
∴cos α=cos(α+-)=cos(α+)·cos+sin(α+)sin
=-×+×=-.]
2.D [由f(3α+π)=,
得4sin[(3α+π)+]=,
即4sin(α+)=,
所以cos α=,
又α∈[0,],所以sin α=.
由f(3β+)=-,
得4sin[(3β+)+]=-,
即sin(β+π)=-,
所以sin β=.
又β∈[0,],
所以cos β=.
所以cos(α-β)= 21、cos αcos β+sin αsin β=×+×=.]
3.B [由bcos C+ccos B=asin A,得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin2A,所以sin A=1,由0
22、B==2-,故選D.]
6.
解析?。剑剑剑?
7.8
解析 ∵cos A=-,0<A<π,
∴sin A=,
S△ABC=bcsin A=bc×
=3,∴bc=24,
又b-c=2,∴b2-2bc+c2=4,b2+c2=52,
由余弦定理得,a2=b2+c2-2bccos A
=52-2×24×=64,
∴a=8.
8.15
解析 依題意有PD⊥AD,BA=30 m,BC=10 m,
∠PAD=θ,∠PBD=2θ,∠PCD=4θ,
所以∠APB=∠PBD-∠PAD=θ=∠PAD.
所以PB=BA=30 m.
同理可得PC=BC=10 m.
在△BPC中,由 23、余弦定理,得
cos 2θ==,
所以2θ=30°,4θ=60°.
在△PCD中,PD=PC×sin 4θ=10×=15(m).
9.解 (1)由tan=2,
得tan A=.
所以=
==.
(2)由tan A=,A∈(0,π),
得sin A=,cos A=.
又由a=3,B=及正弦定理=,得b=3.
由sin C=sin(A+B)=sin
得sin C=,
設(shè)△ABC的面積為S,
則S=absin C=9.
10.解 (1)因為g(x)=2sin[(x+)-]-+=2sin(x+),
所以f()+g()=2sin(-)-+2sin=1.
(2)因為g(x 24、)=2sin(x+),
所以當(dāng)x+=+2kπ(k∈Z),
即x∈+2kπ(k∈Z)時,g(x)取得最大值.
因為x=B時g(x)取得最大值,
又B∈(0,π),所以B=.
而b2=a2+c2-2accos=a2+c2-ac=(a+c)2-3ac=16-3ac≥16-3·()2=16-12=4,
所以b≥2.又b0,
∴=≤=,
故的最大值為.
12.100
解析 在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,即=, 25、所以BC=300.在Rt△BCD中,∠CBD=30°,CD=BCtan∠CBD=300·tan 30°=100.
13.2
解析 在△ABC中,因為∠ADC=120°,所以∠ADB=60°,
因為向量,的夾角為120°,
所以∠B=60°,所以△ADB為等邊三角形.
因為AD=2,所以AB=BD=2.
因為=2,所以點D為BC的中點,
所以BC=4,所以△ABC的面積S△ABC=BA·BC·sin B=×2×4×sin 60°=2.
14.(1)證明 tan ==
=.
(2)解 由A+C=180°,得C=180°-A,D=180°-B,
由(1),有tan +tan +tan +tan
=+++
=+.
連接BD,
在△ABD中,有BD2=AB2+AD2-2AB·ADcos A,
在△BCD中,有BD2=BC2+CD2-2BC·CDcos C,
所以AB2+AD2-2AB·ADcos A=BC2+CD2+2BC·CDcos A,
則cos A =
==,
于是sin A=
= =.
連接AC,同理可得
cos B===,
于是sin B== =.
所以tan +tan +tan +tan
=+=+
=.
19
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市教育局冬季運動會安全工作預(yù)案
- 2024年秋季《思想道德與法治》大作業(yè)及答案3套試卷
- 2024年教師年度考核表個人工作總結(jié)(可編輯)
- 2024年xx村兩委涉案資金退還保證書
- 2024年憲法宣傳周活動總結(jié)+在機(jī)關(guān)“弘揚憲法精神推動發(fā)改工作高質(zhì)量發(fā)展”專題宣講報告會上的講話
- 2024年XX村合作社年報總結(jié)
- 2024-2025年秋季第一學(xué)期初中歷史上冊教研組工作總結(jié)
- 2024年小學(xué)高級教師年終工作總結(jié)匯報
- 2024-2025年秋季第一學(xué)期初中物理上冊教研組工作總結(jié)
- 2024年xx鎮(zhèn)交通年度總結(jié)
- 2024-2025年秋季第一學(xué)期小學(xué)語文教師工作總結(jié)
- 2024年XX村陳規(guī)陋習(xí)整治報告
- 2025年學(xué)校元旦迎新盛典活動策劃方案
- 2024年學(xué)校周邊安全隱患自查報告
- 2024年XX鎮(zhèn)農(nóng)村規(guī)劃管控述職報告