文科數(shù)學(xué) 北師大版練習(xí):第二章 第十節(jié) 第三課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析

上傳人:痛*** 文檔編號:68640142 上傳時(shí)間:2022-04-03 格式:DOC 頁數(shù):13 大小:157.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
文科數(shù)學(xué) 北師大版練習(xí):第二章 第十節(jié) 第三課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析_第1頁
第1頁 / 共13頁
文科數(shù)學(xué) 北師大版練習(xí):第二章 第十節(jié) 第三課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析_第2頁
第2頁 / 共13頁
文科數(shù)學(xué) 北師大版練習(xí):第二章 第十節(jié) 第三課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《文科數(shù)學(xué) 北師大版練習(xí):第二章 第十節(jié) 第三課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《文科數(shù)學(xué) 北師大版練習(xí):第二章 第十節(jié) 第三課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用 Word版含解析(13頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 課時(shí)作業(yè) A組——基礎(chǔ)對點(diǎn)練 1.(20xx·榆林市模擬)定義在R上的函數(shù)f(x),滿足(x-1)f′(x)≤0,且y=f(x+1)為偶函數(shù),當(dāng)|x1-1|<|x2-1|時(shí),有(  ) A.f(x1)≥f(x2)    B.f(x1)=f(x2) C.f(x1)>f(x2) D.f(x1)≤f(x2) 解析:因?yàn)楹瘮?shù)y=f(x+1)為偶函數(shù),所以y=f(x+1)=f(-x+1),即函數(shù)y=f(x)關(guān)于x=1對稱,所以f(2-x1)=f(x1),f(2-x2)=f(x2).當(dāng)x>1時(shí),f′(x)≤0,此時(shí)函數(shù)y=f(x)單調(diào)遞減,當(dāng)x<1時(shí),f′(x)≥0,此時(shí)函數(shù)y=f(

2、x)單調(diào)遞增.①若x1≥1,x2≥1,則由|x1`-1|<|x2-1|,得x1-1<x2-1,即1≤x1<x2,所以f(x1)>f(x2).②同理若x1<1,x2<1,由|x1-1|<|x2-1|,得-(x1-1)<-(x2-1),即x2<x1<1,所以f(x1)>f(x2).③若x1,x2中一個(gè)大于1,一個(gè)小于1,不妨設(shè)x1<1,x2≥1,則-(x1-1)<x2-1, 可得1<2-x1<x2,所以f(2-x1)>f(x2),即f(x1)>f(x2). 綜上有f(x1)>f(x2). 答案:C 2.對任意x∈R,函數(shù)f(x)的導(dǎo)數(shù)存在,若f′(x)>f(x),且a>0,則以下說法正確的

3、是(  ) A.f(a)>ea·f(0) B.f(a)f(0) D.f(a)0,故g(x)=為R上的單調(diào)遞增函數(shù),因此g(a)>g(0),即>=f (0),所以f(a)>ea·f(0),選A. 答案:A 3.若存在正數(shù)x使2x(x-a)<1成立,則a的取值范圍是(  ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞) 解析:∵2x(x-a)<1,∴a>x-. 令f(x)=x-, ∴f′(x)=1+2-xln 2>0. ∴f(x)在(0,+∞)上單調(diào)遞增,

4、 ∴f(x)>f(0)=0-1=-1, ∴a的取值范圍為(-1,+∞),故選D. 答案:D 4.已知函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),若p:任意x1,x2∈R,且x1≠x2,||<2 017,q:任意x∈R,|f′(x)|<2 017,則p是q的(  ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:因?yàn)槿我鈞1,x2∈R,且x1≠x2,所以不妨設(shè)x1<x2,則由||<2 017可得|f(x1)-f(x2)|<2 017x2-2 017 x1, 則, 即. 令g(x)=f(x)+2 017 x,則由單調(diào)性的定

5、義可知g(x)在R上單調(diào)遞增,所以g′(x)=f′(x)+2 017≥0在R上恒成立,即f′(x)≥-2 017在R上恒成立,同理令h(x)=f(x)-2 017x,可得f′(x)≤2 017在R上恒成立,所以p等價(jià)于任意x∈R,|f′(x)|≤2 017,顯然q可以推出p,而p推不出q,所以p是q的必要不充分條件. 答案:B 5.(20xx·昆明市檢測)已知函數(shù)f(x)=若方程f(x)-ax=0恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是(  ) A.(0,) B.[,) C.(,] D.(-∞,0]∪[,+∞) 解析:方程f(x)-ax=0有兩個(gè)不同的實(shí)根,即直線y=ax與函數(shù)f

6、(x)的圖像有兩個(gè)不同的交點(diǎn).作出函數(shù)f(x)的圖像如圖所示.當(dāng)x>1時(shí),f(x)=ln x,得f′(x)=,設(shè)直線y=kx與函數(shù)f(x)=ln x(x>1)的圖像相切,切點(diǎn)為(x0,y0),則==,解得x0=e,則k=,即y=x是函數(shù)f(x)=ln x(x>1)的圖像的切線,當(dāng)a≤0時(shí),直線y=ax與函數(shù)f(x)的圖像有一個(gè)交點(diǎn),不合題意;當(dāng)0<a<時(shí),直線y=ax與函數(shù)f(x)=ln x(x>1)的圖像有兩個(gè)交點(diǎn),但與射線y=x+1(x≤1)也有一個(gè)交點(diǎn),這樣就有三個(gè)交點(diǎn),不合題意;當(dāng)a≥時(shí),直線y=ax與函數(shù)f(x)的圖像至多有一個(gè)交點(diǎn),不合題意;只有當(dāng)≤a<時(shí),直線y=ax與函數(shù)f(x

7、)的圖像有兩個(gè)交點(diǎn),符合題意.故選B. 答案:B 6.已知函數(shù)f(x)=m-2ln x(m∈R),g(x)=-,若至少存在一個(gè)x0∈[1,e],使得f(x0)

8、則實(shí)數(shù)a的取值范圍為(  ) A.-- C.-e0,所以由g′(x)=0,解得x=-1, 當(dāng)x>-1時(shí),g′(x)>0,函數(shù)g(x)為增函數(shù);當(dāng)x<-1時(shí),g′(x)<0,函數(shù)g(x)為減函數(shù),所以當(dāng)x=-1時(shí)函數(shù)g(x)有最小值;g(-1)=-e-1=-.畫出函數(shù)y=xex的圖像,如圖所示,顯然當(dāng)-

9、 A.[-5,-3] B. C.[-6,-2] D.[-4,-3] 解析:當(dāng)x∈(0,1]時(shí),得a≥-33-42+, 令t=,則t∈[1,+∞),a≥-3t3-4t2+t, 令g(t)=-3t3-4t2+t,t∈[1,+∞),則g′(t)=-9t2-8t+1=-(t+1)·(9t-1),顯然在[1,+∞)上,g′(t)<0,g(t)單調(diào)遞減, 所以g(t)max=g(1)=-6,因此a≥-6;同理,當(dāng)x∈[-2,0)時(shí), 得a≤-2. 由以上兩種情況得-6≤a≤-2,顯然當(dāng)x=0時(shí)也成立, 故實(shí)數(shù)a的取值范圍為[-6,-2]. 答案:C 9.若函數(shù)f (x)=2x+s

10、in x對任意的m∈[-2,2],f(mx-3)+f(x)<0恒成立,則x的取值范圍是__________. 解析:f(-x)=-f(x), f(x)為奇函數(shù), 若x∈R時(shí),f′(x)=2+cos x>0恒成立, ∴f(x)在R上為增函數(shù), 又f(x)為奇函數(shù),故 在定義域內(nèi)為增函數(shù),∴f(mx-3)+f(x)<0可變形為f(mx-3)

11、知函數(shù)f(x)=ln x+3x-8的零點(diǎn)x0∈[a,b],且b-a=1,a,b∈N*,則a+b=__________. 解析:∵f(2)=ln 2+6-8=ln 2-2<0, f(3)=ln 3+9-8=ln 3+1>0, 且函數(shù)f(x)=ln x+3x-8在(0,+∞)上為增函數(shù), ∴x0∈[2,3],即a=2,b=3. ∴a+b=5. 答案:5 11.已知函數(shù)f(x)=ax+xln x(a∈R). (1)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍; (2)當(dāng)a=1且k∈Z時(shí),不等式k(x-1)

12、1)f′(x)=a+ln x+1, 由題意知f′(x)≥0在[e,+∞)上恒成立, 即ln x+a+1≥0在[e,+∞)上恒成立, 即a≥-(ln x+1)在[e,+∞)上恒成立, 而[-(ln x+1)]max=-(ln e+1)=-2, ∴a≥-2,即a的取值范圍為[-2,+∞). (2)當(dāng)a=1時(shí),f(x)=x+xln x, ∵x∈(1,+∞), ∴原不等式可化為k<, 即k<對任意x>1恒成立. 令g(x)=,則g′(x)=. 令h(x)=x-ln x-2(x>1), 則h′(x)=1-=>0, ∴h(x)在(1,+∞)上單調(diào)遞增. ∵h(yuǎn)(3)=1-ln 3

13、<0,h(4)=2-2ln 2>0, ∴存在x0∈(3,4)使h(x0)=0,即g′(x0)=0. 即當(dāng)1x0時(shí),h(x)>0,即g′(x)>0. ∴g(x)在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增. 由h(x0)=x0-ln x0-2=0,得ln x0=x0-2, g(x)min=g(x0)== =x0∈(3,4), ∴k

14、為減函數(shù),求實(shí)數(shù)m的取值范圍; (2)當(dāng)00時(shí),由于函數(shù)y=2mx2-x+1的圖像的對稱軸x=>0,故需且只需Δ>0,即1-8m>0,解得m<. 故0

15、有一解. 設(shè)g(x)=mx2-x+ln x-(2mx-m-1), 則g(x)在(0,+∞)上有且只有一個(gè)零點(diǎn). 又g(1)=0,故函數(shù)g(x)有零點(diǎn)x=1. 則g′(x)=2mx-1+-2m==. 當(dāng)m=時(shí),g′(x)≥0, 又g(x)不是常數(shù)函數(shù),故g(x)在(0,+∞)上單調(diào)遞增. ∴函數(shù)g(x)有且只有一個(gè)零點(diǎn)x=1,滿足題意. 當(dāng)01, 由g′(x)>0,得0; 由g′(x)<0,得1

16、 g′(x) + 0 - 0 + g(x)  極大值  極小值  根據(jù)上表知g<0. 又g(x)=mx+m+ln x+1. ∴g>0, 故在上,函數(shù)g(x)又有一個(gè)零點(diǎn),不滿足題意. 綜上所述,m=. B組——能力提升練 1.已知函數(shù)f(x)=x(ln x-ax)有極值,則實(shí)數(shù)a的取值范圍是(  ) A.(-∞,) B.(0,) C.(-∞,] D.(0,] 解析:f(x)=xln x-ax2(x>0),f′(x)=ln x+1-2ax.令g(x)=ln x+1-2ax, ∵函數(shù)f(x)=x(ln x-ax)有極值,則g(x)=0在(0,+

17、∞)上有實(shí)根.g′(x)=-2a=, 當(dāng)a≤0時(shí),g′(x)>0,函數(shù)g(x)在(0,+∞)上單調(diào)遞增,當(dāng)x→0時(shí),g(x)→-∞,當(dāng)x→+∞,g(x)→+∞, 故存在x0∈(0,+∞),使得f(x)在(0,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增,故f(x)存在極小值f(x0),符合題意. 當(dāng)a>0時(shí),令g′(x)=0,得x=.當(dāng)0<x<時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增;當(dāng)x>時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減,∴x=時(shí),函數(shù)g(x)取得極大值.∵當(dāng)x→0和x→+∞時(shí),均有g(shù)(x)→-∞,要使g(x)=0在(0,+∞)上有實(shí)根,且f(x)有極值,則g()=ln>0,解

18、得0<a<.綜上可知,實(shí)數(shù)a的取值范圍是(-∞,),選A. 答案:A 2.已知函數(shù)f(x)=-k(+ln x),若x=2是函數(shù)f(x)的唯一極值點(diǎn),則實(shí)數(shù)k的取值范圍為(  ) A.(-∞,e] B.[0,e] C.(-∞,e) D.[0,e) 解析:f(x)=-k(+ln x),則f′(x)=(ex-kx),∵x=2是函數(shù)f(x)的唯一極值點(diǎn),∴x=2是f(x)=0的唯一根.∴ex-kx≥0在(0,+∞)上恒成立.令g(x)=ex-kx(x∈(0,+∞)),則g′(x)=ex-k.當(dāng)k≤0時(shí),g′(x)>0恒成立,g(x)在(0,+∞)上單調(diào)遞增,又g(0)=1,∴g(x)≥0

19、恒成立.當(dāng)k>0時(shí),g′(x)=0的根為x=ln k,當(dāng)0<x<ln k時(shí),g′(x)<0,g(x)單調(diào)遞減;當(dāng)x>ln k時(shí),g′(x)>0,g(x)單調(diào)遞增.∴g(x)的最小值為g(ln k)=k-kln k,∴k-kln k≥0,∴0<k≤e,綜上所述,k≤e.故選A. 答案:A 3.(20xx·宜州調(diào)研)設(shè)f(x)=|ln x|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  ) A. B.[ZXXK] C. D. 解析:令y1=f(x)=|ln x|,y2=ax,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個(gè)零點(diǎn),則y1

20、=f(x)=|ln x|與y2=ax的圖像(圖略)在區(qū)間(0,4)上有三個(gè)交點(diǎn).由圖像易知,當(dāng)a≤0時(shí),不符合題意;當(dāng)a>0時(shí),易知y1=|ln x|與y2=ax 的圖像在區(qū)間(0,1)上有一個(gè)交點(diǎn),所以只需要y1=|ln x|與y2=ax的圖像在區(qū)間(1,4)上有兩個(gè)交點(diǎn)即可,此時(shí)|ln x|=ln x,由ln x=ax,得a=.令h(x)=,x∈(1,4),則h′(x)=,故函數(shù)h(x)在(1,e)上單調(diào)遞增,在(e,4)上單調(diào)遞減,h(e)==,h(1)=0,h(4)==,所以

21、≤0,則實(shí)數(shù)m的取值范圍是(  ) A.(,2] B.[-,-) C.[-,-) D.[-4e,-) 解析:由f(x)≤0得(3x+1)ex+1+mx ≤0,即mx≤-(3x+1)ex+1,設(shè)g(x)=mx,h(x)=-(3x+1)ex+1,則h′(x)=-[3ex+1+(3x+1)ex+1]=-(3x+4)ex+1,由h′(x)>0得-(3x+4)>0,即x<-,由h′(x)<0得-(3x+4)<0,即x>-,故當(dāng)x=-時(shí),函數(shù)h(x)取得極大值.在同一平面直角坐標(biāo)系中作出y=h(x),y=g(x)的大致圖像如圖所示,當(dāng)m≥0時(shí),滿足g(x)≤h(x)的整數(shù)解超過兩個(gè),不滿足條

22、件;當(dāng)m<0時(shí),要使g(x)≤h(x)的整數(shù)解只有兩個(gè),則需滿足,即,即,即-≤m<-,即實(shí)數(shù)m的取值范圍是[-,-),故選B. 答案:B 5.(20xx·鄭州模擬)若函數(shù)f(x)=x2+-aln x(a>0)有唯一的零點(diǎn)x0,且m0,x>0).因?yàn)楹瘮?shù)f(x)有唯一零點(diǎn)x0,所以函數(shù)g(x),h(x)的圖像有唯一一個(gè)交點(diǎn),即g(x),h(x)有唯一公切點(diǎn)(x0,y0),即由得x+-2ln x0=0,令φ(

23、x)=x+-2ln x0,則φ(1)=3>0,φ(2)=5-7ln 2>0,φ(e)=-e2+<0,所以x0∈(2,e),所以m=2,n=3,所以m+n=5. 答案:C 6.若函數(shù)f(x)=+1(a<0)沒有零點(diǎn),則實(shí)數(shù)a的取值范圍為__________. 解析:f′(x)==. 當(dāng)a<0時(shí),f′(x),f(x)的變化情況如下表: x (-∞,2) 2 (2,+∞) f′(x) - 0 + f(x)  極小值  若使函數(shù)f(x)沒有零點(diǎn), 當(dāng)且僅當(dāng)f(2)=+1>0,解得a>-e2, 所以此時(shí)-e2

24、答案:(-e2,0) 7.若正數(shù)x,y滿足15x-y=22,則x3+y3-x2-y2的最小值為________. 解析:由正數(shù)x,y滿足15x-y=22,可得y=15x-22>0,則x>,y>0, 又x3+y3-x2-y2=(x3-x2)+(y3-y2), 其中y3-y2+y=y(tǒng)(y2-y+)=y(tǒng)(y-)2≥0, 即y3-y2≥-y, 當(dāng)且僅當(dāng)y=時(shí)取得等號, 設(shè)f(x)=x3-x2,f(x)的導(dǎo)數(shù)為f′(x)=3x2-2x=x(3x-2), 當(dāng)x>時(shí),f′(x)>0,f(x)遞增,<x<時(shí),f′(x)<0,f(x)遞減. 即有f(x)在x=取得極小值,也為最小值, 此時(shí)y

25、=15×-22=, 則x3+y3-x2-y2≥(x3-x2)+(y3-y2)≥-y=-=1. 當(dāng)且僅當(dāng)x=y(tǒng)=時(shí),取得最小值1. 答案:1 8.(20xx·長沙模擬)已知函數(shù)f(x)=x|x2-a|,若存在x∈[1,2],使得f(x)<2,則實(shí)數(shù)a的取值范圍是__________. 解析:當(dāng)x∈[1,2]時(shí),f(x)=|x3-ax|, 由f(x)<2可得-2

26、 即有-a>-5,即a<5; 設(shè)h(x)=-x2+,導(dǎo)數(shù)為h′(x)=-2x-, 當(dāng)x∈[1,2]時(shí),h′(x)<0, 即h(x)在[1,2]上單調(diào)遞減,可得h(x)max=-1+2=1.即有-a<1,即a>-1. 綜上可得,a的取值范圍是-1

27、φ(e)=,φ()=. 由φ(e)-φ()=-= =<0, 所以φ(e)<φ().所以φ(x)min=φ(e), 如圖可知φ(x)=a有兩個(gè)不等解時(shí),需≤a<.即f(x)=g(x)在[,e]上有兩個(gè)不等解時(shí)a的取值范圍為. 10.(20xx·貴陽模擬)已知函數(shù)f(x)=1-,g(x)=x-ln x. (1)證明:g(x)≥1. (2)證明:(x-ln x)f(x)>1-. 證明:(1)g′(x)=,當(dāng)01時(shí),g′(x)>0, 即g(x)在(0,1)上為減函數(shù),在(1,+∞)上為增函數(shù). 所以g(x)≥g(1)=1,得證. (2)f(x)=1-,f′(x)=, 所以當(dāng)02時(shí),f′(x)>0, 即f(x)在(0,2)上為減函數(shù),在(2,+∞)上為增函數(shù), 所以f(x)≥f(2)=1-,① 又由(1)知x-ln x≥1,②,且①②等號不同時(shí)取得. 所以(x-ln x)f(x)>1-.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!