《2020高考數(shù)學(xué)刷題首選卷 第五章 不等式、推理與證明、算法初步與復(fù)數(shù) 考點測試35 二元一次不等式組與簡單的線性規(guī)劃 理(含解析).docx》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)刷題首選卷 第五章 不等式、推理與證明、算法初步與復(fù)數(shù) 考點測試35 二元一次不等式組與簡單的線性規(guī)劃 理(含解析).docx(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
考點測試35 二元一次不等式組與簡單的線性規(guī)劃
高考概覽
考綱研讀
1.會從實際情境中抽象出二元一次不等式組
2.了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組
3.會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決
一、基礎(chǔ)小題
1.不等式y(tǒng)(x+y-2)≥0在平面直角坐標(biāo)系中表示的區(qū)域(用陰影部分表示)是( )
答案 C
解析 由y(x+y-2)≥0,得或
所以不等式y(tǒng)(x+y-2)≥0在平面直角坐標(biāo)系中表示的區(qū)域是C項.
2.已知點A(-3,-1)與點B(4,-6)在直線3x-2y-a=0的兩側(cè),則實數(shù)a的取值范圍是( )
A.(-24,7)
B.(-7,24)
C.(-∞,-24)∪(7,+∞)
D.(-∞,-7)∪(24,+∞)
答案 B
解析 (-9+2-a)(12+12-a)<0,所以-7<a<24.故選B.
3.若實數(shù)x,y滿足不等式組則該約束條件所圍成的平面區(qū)域的面積是( )
A.3 B. C.2 D.2
答案 C
解析 因為直線x-y=-1與x+y=1互相垂直,所以如圖所示的可行域為直角三角形,易得A(0,1),B(1,0),C(2,3),故|AB|=,|AC|=2,所以其面積為|AB||AC|=2.
4.若變量x,y滿足約束條件則3x+2y的最大值是( )
A.0 B.2 C.5 D.6
答案 C
解析 作不等式組的可行域,如圖:
令z=3x+2y,則y=-x+表示一系列平行于y=-x的直線,并且表示該直線的縱截距.顯然,把直線y=-x平移至點A處,z最大.由得A(1,1).所以zmax=3x+2y=3+2=5.故選C.
5.已知點(a,b)是平面區(qū)域內(nèi)的任意一點,則3a-b的最小值為( )
A.-3 B.-2 C.-1 D.0
答案 B
解析 根據(jù)題意可知(a,b)在如圖陰影中,設(shè)z=3a-b.則b=3a-z,所以-z可以理解為y=3x+t中的縱截距t.因而當(dāng)y=3x+t過點(0,2)時,t最大為2.即-z最大為2,所以z最小為-2.
6.若x,y滿足約束條件則z=x+3y的取值范圍是( )
A.(-∞,2] B.[2,3]
C.[3,+∞) D.[2,+∞)
答案 D
解析 作不等式組表示的平面區(qū)域,如圖.
平移直線x+3y=0到點A時,z取得最小值,由解得點A,,所以zmin=+=2,無最大值.故選D.
7.在如圖所示的平面區(qū)域內(nèi)有A(5,3),B(1,1),C(1,5)三點,若使目標(biāo)函數(shù)z=ax+y(a>0)取得最大值的最優(yōu)解有無窮多個,則實數(shù)a的值是( )
A. B.
C.2 D.
答案 B
解析 由題意知,當(dāng)z=ax+y與直線AC重合時最優(yōu)解有無窮多個.因為kAC=-,所以-a=-,即a=.故選B.
8.已知實數(shù)x,y滿足約束條件則|y-x|的最大值是( )
A.2 B. C.4 D.3
答案 D
解析
畫出不等式組表示的平面區(qū)域(如圖),計算得A(1,2),B(4,1),當(dāng)直線z=x-y過點A時zmin=-1,過點B時zmax=3,則-1≤x-y≤3,則|y-x|≤3.
9.不等式組所表示的平面區(qū)域內(nèi)的整點個數(shù)為( )
A.2 B.3 C.4 D.5
答案 C
解析 由不等式2x+y<6,得y<6-2x,且x>0,y>0,則當(dāng)x=1時,0
1)的圖象上的點,則實數(shù)a的取值范圍是( )
A.(3,+∞) B.(1,3)
C.[3,+∞) D.(1,3]
答案 C
解析 作不等式組表示的平面區(qū)域D,如圖中陰影部分所示.
由解得點A(3,1).
由a>1,對數(shù)函數(shù)的圖象經(jīng)過可行域,此時滿足loga3≤1,解得a≥3,所以實數(shù)a的取值范圍是[3,+∞),故選C.
12.已知實數(shù)x,y滿足則w=x2+y2-4x-4y+8的最小值為________.
答案
解析
目標(biāo)函數(shù)w=x2+y2-4x-4y+8=(x-2)2+(y-2)2,其幾何意義是點(2,2)與可行域內(nèi)的點的距離的平方.由實數(shù)x,y所滿足的不等式組作出可行域如圖中陰影部分所示,由圖可知,點(2,2)到直線x+y-1=0的距離為其到可行域內(nèi)點的距離的最小值,又=,所以wmin=.
二、高考小題
13.(2018天津高考)設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)z=3x+5y的最大值為( )
A.6 B.19 C.21 D.45
答案 C
解析 由變量x,y滿足的約束條件畫出可行域(如圖中陰影部分所示).
作出基本直線l0:3x+5y=0,平移直線l0,當(dāng)直線經(jīng)過點A(2,3)時,z取最大值,即zmax=32+53=21.故選C.
14.(2018全國卷Ⅱ)若x,y滿足約束條件
則z=x+y的最大值為________.
答案 9
解析 不等式組表示的可行域是以A(5,4),B(1,2),C(5,0)為頂點的三角形區(qū)域,如圖所示,由圖可知目標(biāo)函數(shù)z=x+y的最大值在頂點A處取得,即當(dāng)x=5,y=4時,zmax=9.
15.(2018全國卷Ⅰ)若x,y滿足約束條件
則z=3x+2y的最大值為________.
答案 6
解析 根據(jù)題中所給的約束條件,畫出其對應(yīng)的可行域,如圖所示:
由z=3x+2y可得y=-x+z,畫出直線y=-x,將其上下移動,結(jié)合的幾何意義,可知當(dāng)直線過點B時,z取得最大值,由解得B(2,0),此時zmax=32+0=6.
16.(2018全國卷Ⅲ)若變量x,y滿足約束條件則z=x+y的最大值是________.
答案 3
解析 作出可行域如圖陰影部分.
由圖可知目標(biāo)函數(shù)在直線x-2y+4=0與x=2的交點(2,3)處取得最大值3.
17.(2018浙江高考)若x,y滿足約束條件則z=x+3y的最小值是________,最大值是________.
答案 -2 8
解析 由約束條件得可行域是以A(1,1),B(2,2),C(4,-2)為頂點的三角形區(qū)域(含邊界),如圖.當(dāng)直線y=-x+過點C(4,-2)時,z=x+3y取得最小值-2,過點B(2,2)時,z=x+3y取得最大值8.
18.(2018北京高考)若x,y滿足x+1≤y≤2x,則2y-x的最小值是________.
答案 3
解析 由x+1≤y≤2x作出可行域,如圖中陰影部分所示.設(shè)z=2y-x,則y=x+z,當(dāng)直線y=x+z過A(1,2)時,z取得最小值3.
三、模擬小題
19.(2018山西太原模擬)已知實數(shù)x,y滿足
則z=2x-2y-1的取值范圍是( )
A.,5 B.[0,5]
C.,5 D.-,5
答案 D
解析 作出不等式組表示的可行域,如圖陰影部分所示,可知2-2-1≤z<22-2(-1)-1,即z的取值范圍是-,5.
20.(2018南昌一模)設(shè)不等式組表示的平面區(qū)域為M,若直線y=kx經(jīng)過區(qū)域M內(nèi)的點,則實數(shù)k的取值范圍為( )
A.,2 B.,
C.,2 D.,2
答案 C
解析 作不等式組表示的平面區(qū)域,如圖陰影部分所示:
由得A(1,2),由得B(2,1),平面區(qū)域M即為圖中陰影部分△ABC,直線y=kx經(jīng)過區(qū)域M內(nèi)的點A時,k=2,直線y=kx經(jīng)過區(qū)域M內(nèi)的點B時,k=,故≤k≤2,故選C.
21.(2018長沙統(tǒng)考)已知x,y滿足約束條件
若z=ax+y的最大值為4,則a=( )
A.2 B. C.-2 D.-
答案 A
解析
作不等式組表示的平面區(qū)域如圖.當(dāng)直線l:y=-ax+z經(jīng)過△AOB區(qū)域時,l在y軸上的最大截距為4,則點B(2,0)為最優(yōu)解,所以z=2a=4,即a=2,故選A.
22.(2018太原模擬)已知不等式ax-2by≤2在平面區(qū)域{(x,y)||x|≤1且|y|≤1}上恒成立,則動點P(a,b)所形成平面區(qū)域的面積為( )
A.4 B.8 C.16 D.32
答案 A
解析 作平面區(qū)域{(x,y)||x|≤1且|y|≤1},如圖1所示.該平面區(qū)域表示正方形ABCD內(nèi)部(含邊界).令z=ax-2by,因為ax-2by≤2恒成立,則函數(shù)z=ax-2by在該平面區(qū)域要求的條件下,zmax=2恒成立.當(dāng)直線ax-2by-z=0過點A(-1,1)或B(1,1)或C(1,-1)或D(-1,-1)時,有
再作該不等式組表示的可行域,即菱形EFGH內(nèi)部(含邊界).如圖2所示.其中H(-2,0),F(xiàn)(2,0),E(0,1),G(0,-1),所以動點P(a,b)所形成平面區(qū)域的面積為42=4.故選A.
23.(2018湖北八市聯(lián)考)已知x,y滿足若z=x+2y有最大值4,則實數(shù)m的值為( )
A.-4 B.-2 C.-1 D.1
答案 B
解析 可行域所表示區(qū)域為三條直線所封閉的三角形區(qū)域(含邊界),如圖陰影部分所示.依題意,有直線y=-x+的縱截距有最大值2,則結(jié)合圖形可知需滿足直線2x-y=m過點(0,2),從而m=20-2=-2,故選B.
24.(2018河北石家莊質(zhì)檢)在平面直角坐標(biāo)系中,不等式組(r為常數(shù))表示的平面區(qū)域的面積為π,若x,y滿足上述約束條件,則z=的最小值為( )
A.-1 B.-
C. D.-
答案 D
解析 作出不等式組表示的平面區(qū)域,如圖所示,由題意知πr2=π,解得r=2.z==1+,易知表示可行域內(nèi)的點(x,y)與點P(-3,2)的連線的斜率,由圖可知當(dāng)點(x,y)與點P的連線與圓x2+y2=r2相切時斜率最?。O(shè)切線方程為y-2=k(x+3),即kx-y+3k+2=0,則有=2,解得k=-或k=0(舍),所以zmin=1-=-.故選D.
25.(2018河北石家莊質(zhì)檢)設(shè)變量x,y滿足約束條件則的最大值為________.
答案 3
解析 題設(shè)中的約束條件如圖中陰影部分所表示的區(qū)域,則表示可行域內(nèi)點P(x,y)與B(0,-1)的連線的斜率,由圖知,當(dāng)P位于A(1,2)時,取得最大值=3.
26.(2018福州模擬)某工廠制作仿古的桌子和椅子,需要木工和漆工兩個工種,已知生產(chǎn)一把椅子需要木工4個工作時,漆工2個工作時;生產(chǎn)一張桌子需要木工8個工作時,漆工1個工作時.生產(chǎn)一把椅子的利潤為1500元,生產(chǎn)一張桌子的利潤為2000元,該廠每個月木工最多完成8000個工作時,漆工最多完成1300個工作時,根據(jù)以上條件,該廠安排生產(chǎn)每個月所能獲得的最大利潤是________元.
答案 2100000
解析 依題意,設(shè)每個月生產(chǎn)x把椅子、y張桌子,那么利潤t=1500x+2000y.其中x,y滿足約束條件
可行域如圖中陰影部分所示,對于不同的t值,t=1500x+2000y表示一組斜率為-的平行線,且t越大,相應(yīng)的直線位置越高;t越小,相應(yīng)的直線位置越低.依題意,要求t的最大值,需把直線t=1500x+2000y盡量地往上平移,又考慮到x,y的允許范圍,顯然當(dāng)直線通過點B時,處在這組平行線的最高位置,此時t取最大值.由得點B(200,900),從而tmax=1500200+2000900=2100000(元),即生產(chǎn)200把椅子、900張桌子可獲得最大利潤2100000元.
一、高考大題
1.(2017天津高考)電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:
連續(xù)劇播放時長(分鐘)
廣告播放時長(分鐘)
收視人次(萬)
甲
70
5
60
乙
60
5
25
已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(1)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?
解 (1)由已知,x,y滿足的數(shù)學(xué)關(guān)系式為
即
該二元一次不等式組所表示的平面區(qū)域為圖①中的陰影部分中的整數(shù)點.
(2)設(shè)總收視人次為z萬,則目標(biāo)函數(shù)為z=60x+25y.
考慮z=60x+25y,將它變形為y=-x+,這是斜率為-,隨z變化的一族平行直線.為直線在y軸上的截距,當(dāng)取得最大值時,z的值就最大.
又因為x,y滿足約束條件,所以由圖②可知,當(dāng)直線z=60x+25y經(jīng)過可行域上的點M時,截距最大,即z最大.解方程組得則點M的坐標(biāo)為(6,3).所以,電視臺每周播出甲連續(xù)劇6次、乙連續(xù)劇3次時,才能使總收視人次最多.
二、模擬大題
2.(2018廣東佛山月考)若x,y滿足約束條件
(1)求目標(biāo)函數(shù)z=x-y+的最值;
(2)若目標(biāo)函數(shù)z=ax+2y僅在點(1,0)處取得最小值,求a的取值范圍.
解 (1)作出可行域如圖,可求得A(3,4),B(0,1),C(1,0).
平移初始直線x-y=0,過A(3,4)取最小值-2,過C(1,0)取最大值1.∴z的最大值為1,最小值為-2.
(2)直線ax+2y=z僅在點(1,0)處取得最小值,由圖象可知-1<-<2,解得-4
下載提示(請認(rèn)真閱讀)
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2020高考數(shù)學(xué)刷題首選卷
第五章
不等式、推理與證明、算法初步與復(fù)數(shù)
考點測試35
二元一次不等式組與簡單的線性規(guī)劃
理含解析
2020
高考
數(shù)學(xué)
首選
第五
不等式
推理
證明
算法
初步
復(fù)數(shù)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://italysoccerbets.com/p-6359985.html