新版高考數(shù)學(xué)三輪講練測(cè)核心熱點(diǎn)總動(dòng)員新課標(biāo)版 專題20 以橢圓和拋物線為背景的解析幾何大題 Word版含解析

上傳人:痛*** 文檔編號(hào):63205024 上傳時(shí)間:2022-03-17 格式:DOC 頁數(shù):40 大小:1.57MB
收藏 版權(quán)申訴 舉報(bào) 下載
新版高考數(shù)學(xué)三輪講練測(cè)核心熱點(diǎn)總動(dòng)員新課標(biāo)版 專題20 以橢圓和拋物線為背景的解析幾何大題 Word版含解析_第1頁
第1頁 / 共40頁
新版高考數(shù)學(xué)三輪講練測(cè)核心熱點(diǎn)總動(dòng)員新課標(biāo)版 專題20 以橢圓和拋物線為背景的解析幾何大題 Word版含解析_第2頁
第2頁 / 共40頁
新版高考數(shù)學(xué)三輪講練測(cè)核心熱點(diǎn)總動(dòng)員新課標(biāo)版 專題20 以橢圓和拋物線為背景的解析幾何大題 Word版含解析_第3頁
第3頁 / 共40頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版高考數(shù)學(xué)三輪講練測(cè)核心熱點(diǎn)總動(dòng)員新課標(biāo)版 專題20 以橢圓和拋物線為背景的解析幾何大題 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)三輪講練測(cè)核心熱點(diǎn)總動(dòng)員新課標(biāo)版 專題20 以橢圓和拋物線為背景的解析幾何大題 Word版含解析(40頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 1

2、 1 【名師精講指南篇】 【高考真題再現(xiàn)】 1.【20xx新課標(biāo)全國(guó)】已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C (Ⅰ)求C的方程; (Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|. 若直線l不垂直于x軸,設(shè)l與x軸的交點(diǎn)為Q,則,解得,故

3、直線l:;有l(wèi)與圓M相切得,解得;當(dāng)時(shí),直線,聯(lián)立直線與橢圓的方程解得;同理,當(dāng)時(shí),. 2. 【20xx高考全國(guó)1理】已知點(diǎn)A,橢圓E:的離心率為;F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn) (I)求E的方程; (II)設(shè)過點(diǎn)A的動(dòng)直線與E 相交于P,Q兩點(diǎn).當(dāng)?shù)拿娣e最大時(shí),求的直線方程. 【解析】(I)設(shè)右焦點(diǎn),由條件知,,得. 又,所以,.故橢圓的方程為. 3.【20xx全國(guó)I理20】在直角坐標(biāo)系中,曲線與直線 交于,兩點(diǎn). (1)當(dāng)時(shí),分別求在點(diǎn)和處的切線方程; (2)軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說明理由. 解析 (1)由題意知,時(shí),聯(lián)立,解得,

4、. 又,在點(diǎn)處,切線方程為,即, 在點(diǎn)處,,切線方程為,即. 故所求切線方程為和. (2)存在符合題意的點(diǎn),證明如下: 設(shè)點(diǎn)為符合題意的點(diǎn),,,直線,的斜率分別為,.聯(lián)立方程,得,故,, 從而. 當(dāng)時(shí),有,則直線與直線的傾斜角互補(bǔ), 故,所以點(diǎn)符合題意. 4.【20xx全國(guó)II理20】已知橢圓,直線不過原點(diǎn)且不平行 于坐標(biāo)軸,與有兩個(gè)交點(diǎn),線段的中點(diǎn)為. (1)證明:直線的斜率與的斜率的乘積為定值; (2) 若過點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊形能否平行四邊行?若能,求此時(shí)的斜率,若不能,說明理由. (2)不妨設(shè)四邊形能為平行四邊形. 因?yàn)橹本€過點(diǎn),所以不過原點(diǎn)且與有兩個(gè)

5、交點(diǎn)的充要條件是,且. 由(1)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為.由 【熱點(diǎn)深度剖析】 1.圓錐曲線的解答題新課標(biāo)的要求理科一般以橢圓或拋物線為背景,而文科一般以橢圓為背景進(jìn)行綜合考查,由于雙曲線的弱化,故以雙曲線為背景的解析幾何解答題不在考慮.在20xx年高考文理同一道題,以拋物線與圓結(jié)合進(jìn)行考查,主要考查拋物線、圓的標(biāo)準(zhǔn)方程的求法以及直線與拋物線、圓的位置關(guān)系,突出解析幾何的基本思想和方法的考查:如數(shù)形結(jié)合思想、坐標(biāo)化方法等. 20xx年高考文理同一道題,以橢圓與圓結(jié)合進(jìn)行考查,主要考查橢圓的定義、弦長(zhǎng)公式、直線的方程,考查學(xué)生的運(yùn)算能力、化簡(jiǎn)能力以及數(shù)形結(jié)合的能力. 在20xx年文科

6、考查了圓的方程,理科高考試題考查了橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),弦長(zhǎng)公式,函數(shù)的最值,直線的方程,基本不等式等,考查學(xué)生的運(yùn)算能力、化簡(jiǎn)能力以及數(shù)形結(jié)合的能力.20xx年考查了定點(diǎn)定植問題。從近幾年高考來看,圓錐曲線的解答題中主要是以橢圓,拋物線為基本依托,考查橢圓,拋物線方程的求解、考查直線與曲線的位置關(guān)系,考查數(shù)形結(jié)合思想、函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想、分類與整合思想等數(shù)學(xué)思想方法,這道解答題往往是試卷的壓軸題之一.從近幾年高考來看,計(jì)算量都不是太大,說明文理難度都在降低,特別是計(jì)算量不大,但要求的邏輯思維能力,數(shù)形結(jié)合的能力與往年差不多,體現(xiàn)高考重能力,輕運(yùn)算.由于圓錐曲線與方程是傳統(tǒng)的

7、高中數(shù)學(xué)主干知識(shí),在高考命題上已經(jīng)比較成熟,考查的形式和試題的難度、類型已經(jīng)較為穩(wěn)定,預(yù)測(cè)20xx年高考很有可能以橢圓,拋物線為背景,考查探索性命題及最值問題,文科也有可能以圓為背景命題,也有可能繼續(xù)保持題型不變,考查細(xì)節(jié)上有所變化. 2.從近幾年高考來看,求曲線的軌跡方程是高考的常考題型,主要以解答題的形式出現(xiàn),考查軌跡方程的求法以及利用曲線的軌跡方程研究曲線的幾何性質(zhì),一般用直接法、待定系數(shù)法、相關(guān)點(diǎn)代入法等求曲線的軌跡方程,其關(guān)鍵是找到與任意點(diǎn)有關(guān)的等量關(guān)系.軌跡問題的考查往往與函數(shù)、方程、向量、平面幾何等知識(shí)相融合,著重考查分析問題、解決問題的能力,對(duì)邏輯思維能力、運(yùn)算能力也有一定的

8、要求.預(yù)測(cè)20xx年高考仍將以求曲線的方程為主要考點(diǎn),考查學(xué)生的運(yùn)算能力與邏輯推理能力. 【重點(diǎn)知識(shí)整合】 1.橢圓的第一定義:平面內(nèi)到兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)()的點(diǎn)的軌跡. 注意:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無軌跡. 2.直線和橢圓的位置關(guān)系 (1)位置關(guān)系判斷: 直線與橢圓方程聯(lián)立方程組,消掉y,得到的形式(這里的系數(shù)A一定不為0),設(shè)其判別式為, (1)相交:直線與橢圓相交; (2)相切:直線與橢圓相切; (3)相離:直線與橢圓相離; (2弦長(zhǎng)公式: (1)若直線與圓錐曲線相

9、交于兩點(diǎn)A、B,且分別為A、B的橫坐標(biāo),則=,若分別為A、B的縱坐標(biāo),則=,若弦AB所在直線方程設(shè)為,則=. (2)焦點(diǎn)弦(過焦點(diǎn)的弦):焦點(diǎn)弦的弦長(zhǎng)的計(jì)算,一般不用弦長(zhǎng)公式計(jì)算,而是將焦點(diǎn)弦轉(zhuǎn)化為兩條焦半徑之和后,利用第二定義求解.橢圓左焦點(diǎn)弦,右焦點(diǎn)弦.其中最短的為通徑:,最長(zhǎng)為; (3)橢圓的中點(diǎn)弦問題:遇到中點(diǎn)弦問題常用“韋達(dá)定理”或“點(diǎn)差法”求解.在橢圓中,以為中點(diǎn)的弦所在直線的斜率. 3.與焦點(diǎn)三角形相關(guān)的結(jié)論 橢圓上的一點(diǎn)與兩焦點(diǎn)所構(gòu)成的三角,通常叫做焦點(diǎn)三角形.一般與焦點(diǎn)三角形的相關(guān)問題常利用橢圓的第一定義和正弦、余弦定理求解.設(shè)橢圓上的一點(diǎn)到兩焦點(diǎn)的距離分別為,焦點(diǎn)的

10、面積為,設(shè),則在橢圓中,有以下結(jié)論: (1)=,且當(dāng)即為短軸端點(diǎn)時(shí),最大為=; (2);焦點(diǎn)三角形的周長(zhǎng)為; (3),當(dāng)即為短軸端點(diǎn)時(shí),的最大值為; 4.直線和拋物線的位置關(guān)系 (1)位置關(guān)系判斷:直線與雙曲線方程聯(lián)立方程組,消掉y,得到 的形式,當(dāng),直線和拋物線相交,且與拋物線的對(duì)稱軸并行,此時(shí)與拋物線只有一個(gè)交點(diǎn),當(dāng)設(shè)其判別式為, ①相交:直線與拋物線有兩個(gè)交點(diǎn);②相切:直線與拋物線有一個(gè)交點(diǎn); ③相離:直線與拋物線沒有交點(diǎn). 注意:過拋物線外一點(diǎn)總有三條直線和拋物線有且只有一個(gè)公共點(diǎn):兩條切線和一條平行于對(duì)稱軸的直線. (2)焦點(diǎn)弦:若拋物線的焦點(diǎn)弦為AB,,則有,

11、. (3) 在拋物線中,以為中點(diǎn)的弦所在直線的斜率. (4)若OA、OB是過拋物線頂點(diǎn)O的兩條互相垂直的弦,則直線AB恒經(jīng)過定點(diǎn),反之亦成立. 5.求曲線(圖形)方程的方法及其具體步驟如下: 步 驟 含 義 說 明 1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動(dòng)點(diǎn)坐標(biāo). 建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo). (1) 所研究的問題已給出坐標(biāo)系,即可直接設(shè)點(diǎn). (2) 沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系. 2、現(xiàn)(限):由限制條件,列出幾何等式. 寫出適合條件P的點(diǎn)M的集合P={M|P(M)} 這是求曲線方程的重要一步,應(yīng)仔細(xì)

12、分析題意,使寫出的條件簡(jiǎn)明正確. 3、“代”:代換 用坐標(biāo)法表示條件P(M),列出方程f(x,y)=0 常常用到一些公式. 4、“化”:化簡(jiǎn) 化方程f(x,y)=0為最簡(jiǎn)形式. 要注意同解變形. 5、證明 證明化簡(jiǎn)以后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn). 化簡(jiǎn)的過程若是方程的同解變形,可以不要證明,變形過程中產(chǎn)生不增根或失根,應(yīng)在所得方程中刪去或補(bǔ)上(即要注意方程變量的取值范圍). 注意:這五個(gè)步驟(不包括證明)可濃縮為五字“口訣”:建設(shè)現(xiàn)(限)代化. 【應(yīng)試技巧點(diǎn)撥】 1.直線與橢圓的位置關(guān)系 在直線與橢圓的位置關(guān)系問題中,一類是直線和橢圓關(guān)系的判斷,利用判別式法.

13、另一類常與“弦”相關(guān):“平行弦”問題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長(zhǎng)度(弦長(zhǎng))”問題關(guān)鍵是長(zhǎng)度(弦長(zhǎng))公式.在求解弦長(zhǎng)問題中,要注意直線是否過焦點(diǎn),如果過焦點(diǎn),一般可采用焦半徑公式求解;如果不過,就用一般方法求解.要注意利用橢圓自身的范圍來確定自變量的范圍,涉及二次方程時(shí)一定要注意判別式的限制條件. 2.如何利用拋物線的定義解題 (1)求軌跡問題:主要抓住到定點(diǎn)的距離和到定直線距離的幾何特征,并驗(yàn)證其滿足拋物線的定義,然后直接利用定義便可確定拋物線的方程; (2)求最值問題:主要把握兩個(gè)轉(zhuǎn)化:一是把拋物線上的點(diǎn)到焦點(diǎn)的距離可以轉(zhuǎn)化為

14、到準(zhǔn)線的距離;二是把點(diǎn)到拋物線的距離轉(zhuǎn)化為到焦點(diǎn)的距離.在解題時(shí)要準(zhǔn)確把握題設(shè)的條件,進(jìn)行有效的轉(zhuǎn)化,探求最值問題. 3.求曲線方程的常見方法: (1)直接法:直接法是將動(dòng)點(diǎn)滿足的幾何條件或者等量關(guān)系,直接坐標(biāo)化,列出等式化簡(jiǎn)即得動(dòng)點(diǎn)軌跡方程 (2)定義法:若動(dòng)點(diǎn)軌跡的條件符合某一基本軌跡的定義(如橢圓、雙曲線、拋物線、圓等),可用定義直接探求 (3)相關(guān)點(diǎn)法:即利用動(dòng)點(diǎn)是定曲線上的動(dòng)點(diǎn),另一動(dòng)點(diǎn)依賴于它,那么可尋求它們坐標(biāo)之間的關(guān)系,然后代入定曲線的方程進(jìn)行求解根據(jù)相關(guān)點(diǎn)所滿足的方程,通過轉(zhuǎn)換而求動(dòng)點(diǎn)的軌跡方程 (4)參數(shù)法:若動(dòng)點(diǎn)的坐標(biāo)()中的分別隨另一變量的變化而變

15、化,我們可以以這個(gè)變量為參數(shù),建立軌跡的參數(shù)方程.根據(jù)題中給定的軌跡條件,用一個(gè)參數(shù)來分別動(dòng)點(diǎn)的坐標(biāo),間接地把坐標(biāo)聯(lián)系起來,得到用參數(shù)表示的方程.如果消去參數(shù),就可以得到軌跡的普通方程. 注意:(1)求曲線的軌跡與求曲線的軌跡方程的區(qū)別:求曲線的軌跡是在求出曲線軌跡方程后,再進(jìn)一步說明軌跡是什么樣的曲線.(2)求軌跡方程,一定要注意軌跡的純粹性和完備性.要注意區(qū)別“軌跡”與“軌跡方程”是兩個(gè)不同的概念. 4.解析幾何解題的基本方法 解決圓錐曲線綜合題,關(guān)鍵是熟練掌握每一種圓錐曲線的定義、標(biāo)準(zhǔn)方程、圖形與幾何性質(zhì),注意挖掘知識(shí)的內(nèi)在聯(lián)系及其規(guī)律,通過對(duì)知識(shí)的重新組合,以達(dá)到鞏固知識(shí)、提高能

16、力的目的.綜合題中常常離不開直線與圓錐曲線的位置,因此,要樹立將直線與圓錐曲線方程聯(lián)立,應(yīng)用判別式、韋達(dá)定理的意識(shí).解析幾何應(yīng)用問題的解題關(guān)鍵是建立適當(dāng)?shù)淖鴺?biāo)系,合理建立曲線模型,然后轉(zhuǎn)化為相應(yīng)的代數(shù)問題作出定量或定性的分析與判斷.常用的方法:數(shù)形結(jié)合法,以形助數(shù),用數(shù)定形. 在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份――對(duì)稱性、利用到角公式)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等. 5.避免繁復(fù)運(yùn)算的基本方法 可以概括為:回避,選擇,尋求.所謂回避,就是根據(jù)題設(shè)的

17、幾何特征,靈活運(yùn)用曲線的有關(guān)定義、性質(zhì)等,從而避免化簡(jiǎn)方程、求交點(diǎn)、解方程等繁復(fù)的運(yùn)算.所謂選擇,就是選擇合適的公式,合適的參變量,合適的坐標(biāo)系等,一般以直接性和間接性為基本原則.因?yàn)閷?duì)普通方程運(yùn)算復(fù)雜的問題,用參數(shù)方程可能會(huì)簡(jiǎn)單;在某一直角坐標(biāo)系下運(yùn)算復(fù)雜的問題,通過移軸可能會(huì)簡(jiǎn)單;在直角坐標(biāo)系下運(yùn)算復(fù)雜的問題,在極坐標(biāo)系下可能會(huì)簡(jiǎn)單“所謂尋求”. 6. 解析幾何與向量綜合時(shí)可能出現(xiàn)的向量?jī)?nèi)容: (1)給出直線的方向向量或; (2)給出與相交,等于已知過的中點(diǎn); (3)給出,等于已知是的中點(diǎn); (4)給出,等于已知與的中點(diǎn)三點(diǎn)共線; (5) 給出以下情形之一:①;②存在實(shí)數(shù);③若

18、存在實(shí)數(shù),等于已知三點(diǎn)共線; (6) 給出,等于已知是的定比分點(diǎn),為定比,即; (7) 給出,等于已知,即是直角,給出,等于已知是鈍角, 給出,等于已知是銳角; (8)給出,等于已知是的平分線; (9)在平行四邊形中,給出,等于已知是菱形; (10)在平行四邊形中,給出,等于已知是矩形; (11)在中,給出,等于已知是的外心(三角形外接圓的圓心,三角形的外心是三角形三邊垂直平分線的交點(diǎn)); (12)在中,給出,等于已知是的重心(三角形的重心是三角形三條中線的交點(diǎn)); (13)在中,給出,等于已知是的垂心(三角形的垂心是三角形三條高的交點(diǎn)); (14)在中,給出等于已知通過的內(nèi)

19、心; (15)在中,給出等于已知是的內(nèi)心(三角形內(nèi)切圓的圓心,三角形的內(nèi)心是三角形三條角平分線的交點(diǎn)); (16)在中,給出,等于已知是中邊的中線. 7.定點(diǎn)、定值問題必然是在變化中所表現(xiàn)出來的不變的量,那么就可以用變化的量表示問題的直線方程、數(shù)量積、比例關(guān)系等,這些直線方程、數(shù)量積、比例關(guān)系不受變化的量所影響的一個(gè)點(diǎn)、一個(gè)值,就是要求的定點(diǎn)、定值.化解這類問題難點(diǎn)的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量. 8.解決圓錐曲線中最值、范圍問題的基本思想是建立目標(biāo)函數(shù)和建立不等關(guān)系,根據(jù)目標(biāo)函數(shù)和不等式求最值、范圍,因此這類問

20、題的難點(diǎn),就是如何建立目標(biāo)函數(shù)和不等關(guān)系.建立目標(biāo)函數(shù)或不等關(guān)系的關(guān)鍵是選用一個(gè)合適變量,其原則是這個(gè)變量能夠表達(dá)要解決的問題,這個(gè)變量可以是直線的斜率、直線的截距、點(diǎn)的坐標(biāo)等,要根據(jù)問題的實(shí)際情況靈活處理. 【考場(chǎng)經(jīng)驗(yàn)分享】 1.判斷兩種標(biāo)準(zhǔn)方程的方法為比較標(biāo)準(zhǔn)形式中與的分母大小,若的分母比的分母大,則焦點(diǎn)在x軸上,若的分母比的分母小,則焦點(diǎn)在y軸上. 2.注意橢圓的范圍,在設(shè)橢圓上點(diǎn)的坐標(biāo)時(shí),則,這往往在求與點(diǎn)有關(guān)的最值問題中特別有用,也是容易忽略導(dǎo)致求最值錯(cuò)誤的原因. 3.注意橢圓上點(diǎn)的坐標(biāo)范圍,特別是把橢圓上某一點(diǎn)坐標(biāo)視為某一函數(shù)問題求解,求函數(shù)的單調(diào)區(qū)間,最值有重要意義.

21、 4.直線和拋物線若有一個(gè)公共點(diǎn),并不能說明直線和拋物線相切,還有可能直線與拋物線的對(duì)稱軸平行. 5.在求得軌跡方程之后,要深入地思考一下:(1)是否還遺漏了一些點(diǎn)?是否還有另一個(gè)滿足條件的軌跡方程存在?(2)在所求得的軌跡方程中,x,y的取值范圍是否有什么限制?確保軌跡上的點(diǎn)“不多不少”. 6.作為解答題的倒數(shù)第二個(gè),試題的難度較大,也體現(xiàn)在計(jì)算量上尤為明顯,學(xué)生在解題時(shí)往往會(huì)思路,但計(jì)算往往不對(duì),對(duì)此,建議如下:第一問保證準(zhǔn)確,如軌跡方程,曲線方程,或者幾何性質(zhì)等,因?yàn)榈诙柾缘谝粏枮榛A(chǔ),故第一問要舍得花時(shí)間去驗(yàn)證一下;對(duì)于第二問,往往就是曲線與直線聯(lián)立,建立方程組,利用判別式,

22、韋達(dá)定理等這些都已經(jīng)成立的模式,建立關(guān)系式,即使思路無法進(jìn)行,也要準(zhǔn)確的放在卷面上,一般它們都要占到部分分?jǐn)?shù);如果涉及到直線方程的探索,特別注意斜率不存在的情況,有時(shí)一些定值定點(diǎn)問題,可以通過這種特殊情況直接得到. 【名題精選練兵篇】 1.【20xx屆陜西省西北工大附中高三第四次適應(yīng)性考試】已知、分別是橢圓的左、右焦點(diǎn). (1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)的坐標(biāo); (2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍. 2.【20xx屆河南省洛陽市一中高三下學(xué)期第二次模擬】已知兩動(dòng)圓和,把它們的公共點(diǎn)的軌跡記為曲線,若曲線與軸的

23、正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:. (1)求曲線的方程;(2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo); (3)求面積的最大值. 【解析】(1)設(shè)兩動(dòng)圓的公共點(diǎn)為Q,則有.由橢圓的定義可知的軌跡為橢圓,.所以曲線的方程是:. (2)證法一:由題意可知:,設(shè),, 當(dāng)?shù)男甭什淮嬖跁r(shí),易知滿足條件的直線為:過定點(diǎn) 當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)直線:,聯(lián)立方程組: ,把②代入①有: ③,④, 證法二:(先猜后證)由題意可知:,設(shè),, 如果直線恒經(jīng)過一定點(diǎn),由橢圓的對(duì)稱性可猜測(cè)此定點(diǎn)在軸上,設(shè)為; 取特殊直線,則直線的方程為, 解方程組得點(diǎn),同理得點(diǎn), 此時(shí)直線恒經(jīng)過軸上的點(diǎn)

24、 下邊證明點(diǎn)滿足條件 當(dāng)?shù)男甭什淮嬖跁r(shí),直線方程為:, 點(diǎn)的坐標(biāo)為,滿足條件; 當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)直線:,聯(lián)立方程組: ,把②代入①得: ③,④, 所以 (3)面積== 由第(2)小題的③④代入,整理得: 因在橢圓內(nèi)部,所以,可設(shè), ,(時(shí)取到最大值).所以面積的最大值為. 3.【20xx屆湖北省沙市中學(xué)高三下第三次半月考】已知拋物線上點(diǎn)處的切線方程為. (Ⅰ)求拋物線的方程; (Ⅱ)設(shè)和為拋物線上的兩個(gè)動(dòng)點(diǎn),其中且,線段的垂直平分線與軸交于點(diǎn),求面積的最大值. 得, , 設(shè)到的距離, , 當(dāng)且僅當(dāng),即時(shí)取等號(hào),的最大值為8. 4.【20xx

25、屆河北省邯鄲一中高三下第一次模擬】已知兩點(diǎn),直線、相交于點(diǎn),且這兩條直線的斜率之積為. (1)求點(diǎn)的軌跡方程; (2)記點(diǎn)的軌跡為曲線,曲線上在第一象限的點(diǎn)的橫坐標(biāo)為1,直線、與圓相切于點(diǎn)、,又、與曲線的另一交點(diǎn)分別為,,求的面積的最大值(其中點(diǎn)為坐標(biāo)原點(diǎn)). 故直線的斜率為 把直線的方程代入橢圓方程,消去整理得,所以 原點(diǎn)到直線的距離為 5.【20xx屆江蘇省蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研】在平面直角坐標(biāo)系中,已知橢圓:的左,右焦點(diǎn)分別是,,右頂點(diǎn)、上頂點(diǎn)分別為,,原點(diǎn)到直線的距離等于﹒ (1)若橢圓的離心率等于,求橢圓的方程; (2)若過點(diǎn)的直線與橢圓有且只有一個(gè)

26、公共點(diǎn),且在第二象限,直線交軸于點(diǎn)﹒試判斷以為直徑的圓與點(diǎn)的位置關(guān)系,并說明理由﹒ (2)點(diǎn)在以為直徑的圓上﹒ 由題設(shè),直線與橢圓相切且的斜率存在,設(shè)直線的方程為:, 由,得,(*) 則, 化簡(jiǎn),得,所以, , ∵點(diǎn)在第二象限,∴﹒ 把代入方程(*) ,得, 解得,從而,所以 6.【20xx屆陜西省西安一中等八校高三下聯(lián)考】已知橢圓的離心率為,、是橢圓的左、右焦點(diǎn),過作直線交橢圓于、兩點(diǎn),若的周長(zhǎng)為8. (1)求橢圓方程; (2)若直線的斜率不為0,且它的中垂線與軸交于,求的縱坐標(biāo)的范圍; (3)是否在軸上存在點(diǎn),使得軸平分?若存在,求出的值;若不存在,

27、請(qǐng)說明理由. 【解析】(1)依題意得,解得,所以方程為. (3)存在. 假設(shè)存在,由軸平分可得, 即, 有 將式代入有,解得. 7.【20xx屆遼寧省沈陽東北育才學(xué)校高三上二?!恳阎狝為橢圓上的一個(gè)動(dòng)點(diǎn),弦AB、AC分別過焦點(diǎn)F1、F2,當(dāng)AC垂直于x軸時(shí),恰好有. (Ⅰ)求橢圓離心率; (Ⅱ)設(shè),試判斷是否為定值?若是定值,求出該定值并證明;若不是定值,請(qǐng)說明理由. 【解析】(Ⅰ)當(dāng)AC垂直于x軸時(shí),,,∴ ∴,∴,∴,故. 8.【20xx屆四川省成都市七中高三考試】已知橢圓的兩個(gè)焦點(diǎn)分別為,,以橢圓短軸為直徑的圓經(jīng)過點(diǎn). (1)求橢圓的方程; (2)過

28、點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)點(diǎn),記直線的斜率分別為,問:是否為定值?并證明你的結(jié)論. ②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為. 將代入整理化簡(jiǎn),得. 依題意,直線與橢圓必相交于兩點(diǎn),設(shè), 則,,又, 所以 綜上得為定值2. 9. 【江西省九江市20xx年第一次高考模擬】已知橢圓的中心在坐標(biāo)原點(diǎn),右焦點(diǎn)為,、是橢圓的左、右頂點(diǎn),是橢圓上異于、的動(dòng)點(diǎn),且面積的最大值為. (1)求橢圓的方程; (2)是否存在一定點(diǎn)(),使得當(dāng)過點(diǎn)的直線與曲線相交于,兩點(diǎn)時(shí),為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說明理由. 【解析】(1)設(shè)橢圓的方程為(),由已知可得①,∵為橢圓右焦點(diǎn)

29、,∴②,……2分 由①②可得,, 橢圓的方程為; 10. 【江蘇省蘇錫常鎮(zhèn)四市20xx屆高三教學(xué)情況調(diào)研(一)】在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率為,且過點(diǎn),過橢圓的左頂點(diǎn)A作直線軸,點(diǎn)M為直線上的動(dòng)點(diǎn),點(diǎn)B為橢圓右頂點(diǎn),直線BM交橢圓C于P. (1)求橢圓C的方程; (2)求證:; (3)試問是否為定值?若是定值,請(qǐng)求出該定值;若不是定值,請(qǐng)說明理由. 11. 【湖北省黃岡市20xx屆高三上學(xué)期元月調(diào)考】已知拋物線的焦點(diǎn)為,點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,以為焦點(diǎn)的橢圓,過點(diǎn) (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程; (Ⅱ)設(shè),過點(diǎn)作直線與橢圓交于兩點(diǎn),且,若,求的最小值. 【解

30、析】(Ⅰ)易知,橢圓方程為; (Ⅱ)由題意可設(shè),由,設(shè),將得,由得,,,,,,令,的最小值是. 12.【廣東省廣州市20xx屆高三1月模擬】已知橢圓的離心率為,且經(jīng)過點(diǎn).圓. (1)求橢圓的方程; (2)若直線與橢圓C有且只有一個(gè)公共點(diǎn),且與圓相交于兩點(diǎn), 問是否成立?請(qǐng)說明理由. 而,化簡(jiǎn)得.① ,.∴ 點(diǎn)的坐標(biāo)為. 由于,結(jié)合①式知,∴. ∴ 與不垂直. ∴ 點(diǎn)不是線段的中點(diǎn). ∴不成立. 13 .【廣東省潮州市20xx-20xx學(xué)年第一學(xué)期高三期末】已知橢圓()經(jīng)過點(diǎn),離心率為,動(dòng)點(diǎn)(). 求橢圓的標(biāo)準(zhǔn)方程; 求以(為坐標(biāo)原

31、點(diǎn))為直徑且被直線截得的弦長(zhǎng)為的圓的方程; 設(shè)是橢圓的右焦點(diǎn),過點(diǎn)作的垂線與以為直徑的圓交于點(diǎn),證明線段的長(zhǎng)為定值,并求出這個(gè)定值. 【解析】(1)由題意得 ①, 因?yàn)闄E圓經(jīng)過點(diǎn),所以 ②, 又 ③, 由①②③解得,.所以橢圓的方程為. (3)方法一:過點(diǎn)作的垂線,垂足設(shè)為.直線的方程為,直線的方程為.由,解得,故.;.又..所以線段的長(zhǎng)為定值. 方法二:設(shè),則,,,. ,. .又,. .為定值. 14.【珠海市20xx-20xx學(xué)年度第一學(xué)期期末】已知拋物線,圓. (1)在拋物線上取點(diǎn),的圓周上取一點(diǎn),求的最小值; (2)設(shè)為拋物線上的動(dòng)點(diǎn),過作圓的

32、兩條切線,交拋物線于、點(diǎn),求中點(diǎn)的橫坐標(biāo)的取值范圍. (2). 由題設(shè)知,切線與軸不垂直, ,設(shè)切線,設(shè),中點(diǎn),則,將與的方程聯(lián)立消得,即得(舍)或,設(shè)二切線的斜率為,則,,,又到的距離為1,有,兩邊平方得 ,則是的二根,則,則,,在上為增函數(shù), ,的范圍是. 15. 【20xx年廣州市普通高中畢業(yè)班綜合測(cè)試(一)】已知橢圓的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為雙曲線的頂點(diǎn),直線與橢圓交于,兩點(diǎn),且點(diǎn)的坐標(biāo)為,點(diǎn)是橢圓上異于點(diǎn),的任意一點(diǎn),點(diǎn)滿足,,且,,三點(diǎn)不共線. (1)求橢圓的方程; (2)求點(diǎn)的軌跡方程; (3)求面積的最大值及此時(shí)點(diǎn)的坐標(biāo). (2)解法1:設(shè)點(diǎn),點(diǎn),由及

33、橢圓關(guān)于原點(diǎn)對(duì)稱可得,∴,,,.由 , 得,即. ①;同理, 由, 得 . ② ;①②得 . ③; 由于點(diǎn)在橢圓上, 則,得,代入③式得 . 當(dāng)時(shí),有,當(dāng),則點(diǎn)或,此時(shí)點(diǎn)對(duì)應(yīng)的坐標(biāo)分別為或 ,其坐標(biāo)也滿足方程. 當(dāng)點(diǎn)與點(diǎn)重合時(shí),即點(diǎn),由②得 ,解方程組 得點(diǎn)的坐標(biāo)為或.同理, 當(dāng)點(diǎn)與點(diǎn)重合時(shí),可得點(diǎn)的坐標(biāo)為或.∴點(diǎn)的軌跡方程為 , 除去四個(gè)點(diǎn),, ,. (3) 解法1:點(diǎn)到直線的距離為.△的面積為, . 而(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),∴.當(dāng)且僅當(dāng)時(shí), 等號(hào)成立.由解得或 ∴△的面積最大值為, 此時(shí),點(diǎn)的坐標(biāo)為或. 16. 【山東省青島市20xx屆高三上

34、學(xué)期期末】已知拋物線上一點(diǎn)到其焦點(diǎn)F的距離為4;橢圓的離心率,且過拋物線的焦點(diǎn)F. (I)求拋物線和橢圓的標(biāo)準(zhǔn)方程; (II)過點(diǎn)F的直線交拋物線于A、B兩不同點(diǎn),交軸于點(diǎn)N,已知,求證:為定值. (III)直線交橢圓于P,Q兩不同點(diǎn),P,Q在x軸的射影分別為,, ,若點(diǎn)S滿足:,證明:點(diǎn)S在橢圓上. 【解析】(Ⅰ)拋物線上一點(diǎn)到其焦點(diǎn)的距離為;拋物線的準(zhǔn)線為,拋物線上點(diǎn)到其焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以,所以,拋物線的方程為,橢圓的離心率,且過拋物線的焦點(diǎn),所以,,解得,所以橢圓的標(biāo)準(zhǔn)方程為; (Ⅲ)設(shè),所以,則,由得(1) ,(2) (3) (1)

35、+(2)+(3)得: ,即滿足橢圓的方程命題得證 【名師原創(chuàng)測(cè)試篇】 1.已知圓: 及點(diǎn),為圓上一動(dòng)點(diǎn),在同一坐標(biāo)平面內(nèi)的動(dòng)點(diǎn)M滿足:. (Ⅰ)求動(dòng)點(diǎn)的軌跡 的方程; (Ⅱ)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍. (Ⅲ)設(shè)是它的兩個(gè)頂點(diǎn),直線與相交于點(diǎn),與橢圓相交于兩點(diǎn).求四邊形面積的最大值 【解析】(Ⅰ)又已知,圓,則半徑為4,由,則 三點(diǎn)共線,且,則 ,故動(dòng)點(diǎn)的軌跡是以為左、右焦點(diǎn)的橢圓,且,所以,動(dòng)點(diǎn)的軌跡方程為. (Ⅲ)解法一:根據(jù)點(diǎn)到直線的距離公式和①式知,點(diǎn)到的距離分別為,. 又,所以四邊形的面積為=, 當(dāng),即

36、當(dāng)時(shí),上式取等號(hào).所以的最大值為. 解法二:由題設(shè),,.設(shè),,由①得,, 故四邊形的面積為,當(dāng)時(shí),上式取等號(hào).所以的最大值為. 2. 已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)為,直線與拋物線相交于兩點(diǎn),且線段的中點(diǎn)為. (I)求拋物線的和直線的方程; (II)若過且互相垂直的直線分別與拋物線交于求四邊形面積的最小值. (II)設(shè)直線的方程為,與聯(lián)立消去,整理得 由弦長(zhǎng)公式得,同理可得,,所以四邊形面積 當(dāng)且僅當(dāng),即時(shí),四邊形面積取最小值. 3. 已知橢圓:,經(jīng)過點(diǎn)且離心率為. (1)求橢圓的方程; (2)不經(jīng)過原點(diǎn)的直線與橢圓交于不同的兩點(diǎn),若直線的斜率依次成等比數(shù)列,求直線的

37、斜率. 【解析】(1)因?yàn)闄E圓的離心率為,所以,又因?yàn)闄E圓經(jīng)過點(diǎn),所以,則,故橢圓的方程為; 4. 橢圓()過點(diǎn),且離心率. (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程; (Ⅱ)設(shè)動(dòng)直線與橢圓相切于點(diǎn)且交直線于點(diǎn),求橢圓的兩焦點(diǎn)、到切線的距離之積; (Ⅲ)在(II)的條件下,求證:以為直徑的圓恒過點(diǎn). 【解析】(I)由題意得,解得:,橢圓的標(biāo)準(zhǔn)方程為; (II)由,消去,得:, 即,動(dòng)直線與橢圓相切于點(diǎn),,即,焦點(diǎn) 到直線的距離分別為 ,, (III) 設(shè)直線與橢圓E相切于點(diǎn)P,則,∴ =-,∴ ,又聯(lián)立與,得到,,,,∴,∴以PN為直徑的圓恒過點(diǎn). 5. 如圖,在平面直角坐標(biāo)系 xOy 中,

38、A,B 是圓 O:與 x 軸的兩個(gè)交點(diǎn)(點(diǎn) B 在點(diǎn) A 右側(cè)),點(diǎn) Q(-2,0), x 軸上方的動(dòng)點(diǎn) P 使直線 PA,PQ,PB 的斜率存在且依次成等差數(shù)列. (I) 求證:動(dòng)點(diǎn) P 的橫坐標(biāo)為定值; (II)設(shè)直線 PA,PB 與圓 O 的另一個(gè)交點(diǎn)分別為 S,T,求證:點(diǎn) Q,S,T 三點(diǎn)共線. 因?yàn)?,所以直線 QS 和直線 QT 的斜率相等,故點(diǎn) S,T,Q 共線. 6. 已知中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的橢圓的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓過點(diǎn),直線與橢圓交于兩個(gè)不同點(diǎn). (Ⅰ)求橢圓C的方程; (Ⅱ)若直線的斜率為,且不過點(diǎn),設(shè)直線,的斜率分別為,求證:為定值; (Ⅲ)若直線過點(diǎn),為橢圓的另一個(gè)焦點(diǎn),求面積的最大值. (Ⅲ)由(Ⅰ)知,.設(shè),,過點(diǎn)的直線方程為.由

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!