(通用版)2019版高考數(shù)學二輪復習 專題檢測(九)三角恒等變換與解三角形 理(普通生含解析).doc
-
資源ID:6084561
資源大小:71.50KB
全文頁數(shù):9頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
(通用版)2019版高考數(shù)學二輪復習 專題檢測(九)三角恒等變換與解三角形 理(普通生含解析).doc
專題檢測(九) 三角恒等變換與解三角形A組“633”考點落實練一、選擇題1(2019屆高三益陽、湘潭調(diào)研)已知sin ,則cos(2)()A.BC. D解析:選Dsin ,cos 212sin21,cos(2)cos 2,故選D.2(2018全國卷)ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若ABC的面積為,則C()A. B.C. D.解析:選CSabsin Cabcos C,sin Ccos C,即tan C1.C(0,),C.故選C.3若0<<<<,cos ,sin(),則cos ()AB.C D解析:選Ccos cos()cos()cos sin()sin ,因為,所以cos()<0,則cos(),因為,所以sin >0,所以sin ,cos .4若,sin ,cos,則()A. B.C. D.解析:選B由sin ,及,得cos ,由cossin ,及,得cos ,所以sin()sin cos cos sin .又因為,所以.5在ABC中,角A,B,C所對的邊分別為a,b,c,若<cos A,則ABC為()A鈍角三角形 B直角三角形C銳角三角形 D等邊三角形解析:選A根據(jù)正弦定理得<cos A,即sin C<sin Bcos A.ABC,sin Csin(AB)<sin Bcos A,整理得sin Acos B<0.又三角形中sin A>0,cos B<0,<B<,ABC為鈍角三角形6(2018南昌一模)已知臺風中心位于城市A東偏北(為銳角)的150千米處,以 v千米/時沿正西方向快速移動,2.5小時后到達距城市A西偏北(為銳角)的200千米處,若cos cos ,則v()A60 B80C100 D125解析:選C如圖,臺風中心為B,2.5小時后到達點C,則在ABC中,ABsin ACsin ,即sin sin ,又cos cos ,sin2cos2sin2cos21sin2cos2,sin cos ,sin ,cos ,sin ,cos ,cos()cos cos sin sin 0,BC2AB2AC2,(2.5v)215022002,解得v100,故選C.二、填空題7(2018全國卷)已知sin cos 1,cos sin 0,則sin()_.解析:sin cos 1,cos sin 0,22得12(sin cos cos sin )11,sin cos cos sin ,sin().答案:8在ABC中,角A,B,C的對邊分別為a,b,c,若a23b23c22bcsin A,則C等于_解析:由余弦定理得a2b2c22bccos A,所以b2c22bccos A3b23c22bcsin A,即sin Acos A,2sin2,因此bc,AA,所以C.答案:9(2018長春質(zhì)檢)在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若其面積Sb2sin A,角A的平分線AD交BC于點D,AD,a,則b_.解析:由面積公式Sbcsin Ab2sin A,可得c2b,即2.由a,并結(jié)合角平分線定理可得,BD,CD, 在ABC中,由余弦定理得cos B,在ABD中, cos B,即,化簡得b21,解得b1.答案:1三、解答題10(2018全國卷)在平面四邊形ABCD中,ADC90,A45,AB2,BD5.(1)求cos ADB;(2)若DC2,求BC.解:(1)在ABD中,由正弦定理得,即,所以sin ADB.由題設(shè)知,ADB<90,所以cos ADB .(2)由題設(shè)及(1)知,cos BDCsin ADB.在BCD中,由余弦定理得BC2BD2DC22BDDCcos BDC25825225,所以BC5.11(2018昆明調(diào)研)在ABC中,AC2,BC6,ACB150.(1)求AB的長;(2)延長BC至D,使ADC45,求ACD的面積解:(1)由余弦定理AB2AC2BC22ACBCcosACB,得AB21236226cos 15084,所以AB2.(2)因為ACB150,ADC45,所以CAD15045105,由正弦定理,得CD,又sin 105sin(6045)sin 60cos 45cos 60sin 45,所以CD3,又ACD180ACB30,所以SACDACCDsinACD2(3)(1)12已知函數(shù)f(x)2sin xcos x2cos2x.(1)求函數(shù)yf(x)的最小正周期和單調(diào)遞減區(qū)間;(2)已知ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a7,若銳角A滿足f,且sin Bsin C,求bc的值解:(1)f(x)2sin xcos x2cos2xsin 2xcos 2x2sin,因此f(x)的最小正周期為T.由2k2x2k(kZ),得kxk(kZ),所以f(x)的單調(diào)遞減區(qū)間為(kZ)(2)由f2sin2sin A,且A為銳角,所以A.由正弦定理可得2R,sin Bsin C,則bc13,所以cos A,所以bc40.B組大題專攻補短練1(2018天津五區(qū)縣聯(lián)考)在ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且 8 sin22cos 2C7.(1)求tan C的值;(2)若c,sin B2sin A,求a,b的值解:(1)在ABC中,因為ABC,所以,則sincos.由8sin22cos 2C7,得8cos22cos 2C7,所以4(1cos C)2(2cos2C1)7,即(2cos C1)20,所以cos C.因為0C,所以C,于是tan Ctan.(2)由sin B2sin A,得b2a.又c,由余弦定理得c2a2b22abcos ,即a2b2ab3.聯(lián)立,解得a1,b2.2在ABC中,角A,B,C所對的邊分別是a,b,c,滿足a2c2b22bccos A4c0,且ccos Ab(1cos C)(1)求c的值及判斷ABC的形狀;(2)若C,求ABC的面積解:(1)由a2c2b22bccos A4c0及正弦定理得a2c2b22bc4c0,整理,得c2.由ccos Ab(1cos C)及正弦定理,得sin Ccos Asin B(1cos C),即sin Bsin Ccos Asin Bcos Csin(AC)sin Acos Ccos Asin C,所以sin Bcos Csin Acos C,故cos C0或sin Asin B.當cos C0時,C,故ABC為直角三角形;當sin Asin B時,AB,故ABC為等腰三角形(2)由(1)知c2,AB,則ab,因為C,所以由余弦定理,得4a2a22a2cos ,解得a284,所以ABC的面積Sa2sin2.3已知ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且ABC的面積為S accos B.(1)若c2a,求角A,B,C的大??;(2)若a2,且A,求邊c的取值范圍解:由已知及三角形面積公式得Sacsin Baccos B,化簡得sin Bcos B,即tan B,又0<B<,B.(1)法一:由c2a及正弦定理得,sin C2sin A,又AC,sin2sin A,化簡可得tan A,而0<A<,A,C.法二:由余弦定理得,b2a2c22accos Ba24a22a23a2,ba,abc12,A,C.(2)由正弦定理得,即c,由CA,得c1.又由A,知1tan A,2c1,故邊c的取值范圍為2,14ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sin Acos A0,a2,b2.(1)求c的值;(2)設(shè)D為BC邊上一點,且ADAC,求ABD的面積解:(1)因為sin Acos A0,所以sin Acos A,所以tan A.因為A(0,),所以A.由余弦定理得a2b2c22bccos A,代入a2,b2得c22c240,解得c4或c6(舍去),所以c4.(2)由(1)知c4.因為c2a2b22abcos C,所以16284222cos C,所以cos C,所以sin C,所以tan C.在RtCAD中,tan C,所以,即AD.即SADC2,由(1)知SABCbcsin A242,所以SABDSABCSADC2.