中考數學總復習 第一篇 知識 方法 固基 第五單元 四邊形 考點強化練21 矩形、菱形、正方形試題.doc
《中考數學總復習 第一篇 知識 方法 固基 第五單元 四邊形 考點強化練21 矩形、菱形、正方形試題.doc》由會員分享,可在線閱讀,更多相關《中考數學總復習 第一篇 知識 方法 固基 第五單元 四邊形 考點強化練21 矩形、菱形、正方形試題.doc(8頁珍藏版)》請在裝配圖網上搜索。
考點強化練21 矩形、菱形、正方形 夯實基礎 1. (xx山東臨沂)在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F兩點,下列說法正確的是( ) A.若AD⊥BC,則四邊形AEDF是矩形 B.若AD垂直平分BC,則四邊形AEDF是矩形 C.若BD=CD,則四邊形AEDF是菱形 D.若AD平分∠BAC,則四邊形AEDF是菱形 答案D 解析若AD⊥BC,無法判定四邊形AEDF是矩形,所以A錯誤;若AD垂直平分BC,可以判定四邊形AEDF是菱形,所以B錯誤;若BD=CD,無法判定四邊形AEDF是菱形,所以C錯誤;若AD平分∠BAC,則∠EAD=∠FAD=∠ADF,所以AF=DF,又因為四邊形AEDF是平行四邊形,所以四邊形AEDF是菱形,故D正確. 2.(xx合肥四十五中模擬)在?ABCD中,AB=10,BC=14,E、F分別為邊BC、AD上的點.若四邊形AECF為正方形,則AE的長為( ) A.7 B.4或10 C.5或9 D.6或8 答案D 解析 據題意畫圖,設AE的長為x,根據正方形的性質可得BE=14-x,在△ABE中,根據勾股定理可得x2+(14-x)2=102,解得x1=6,x2=8.故AE的長為6或8.故選D. 3. (xx浙江衢州)如圖,矩形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則DF的長等于( ) A.35 B.53 C.73 D.54 答案B 解析設DF=x,則CF=AF=6-x,由勾股定理有x2+42=(6-x)2,解得x=53. 4. (xx陜西)如圖,在菱形ABCD中,點E、F、G、H分別是邊AB、BC、CD和DA的中點,連接EF、FG、GH和HE.若EH=2EF,則下列結論正確的是( ) A.AB=2EF B.AB=2EF C.AB=3EF D.AB=5EF 答案D 解析 連接AC,BD,交于點O.∵E,F分別為AB,BC的中點,∴EF=12AC.∵四邊形ABCD為菱形,∴AO=12AC,AC⊥BD.∴EF=AO.同理:EH=BO.∵EH=2EF.∴BO=2AO.在Rt△ABO中,設AO=x,則BO=2x.∴AB=x2+(2x)2=5x=5AO.∴AB=5EF,故選D. 5. (xx合肥廬陽區(qū)一模)如圖,已知菱形ABCD的周長為16,面積為83,E為AB的中點,若P為對角線BD上一動點,則EP+AP的最小值為( ) A.2 B.23 C.4 D.43 ?導學號16734128? 答案B 解析 如圖作CE⊥AB于E,交BD于P,連接AC、AP.∵菱形ABCD的周長為16,面積為83,∴AB=BC=4,ABCE=83,∴CE=23.在Rt△BCE中,BE=42-(23)2=2,∵BE=EA=2,∴E與E重合,∵四邊形ABCD是菱形,∴BD垂直平分AC,∴A、C關于BD對稱,∴當P與P重合時,PA+PE的值最小,最小值為CE的長,即為23,故選B. 6. (xx合肥瑤海區(qū)模擬)如圖,在平面直角坐標系中,四邊形ABCD是菱形,∠ABC=60,且點A的坐標為(4,0),若E是AD的中點,則點E的坐標為 . 答案(2,-23) 解析過E作EF∥AC,交BD于F,EG∥BD,交AC于G, ∵E是AD的中點, ∴G是AO的中點,F是OD的中點. ∵點A的坐標為(4,0), ∴點G(2,0).由菱形的性質,知AC⊥BD,∠ADB=∠CDB. ∵∠ABC=60, ∴∠ADB=30. ∴OD=3OA=43. ∴OF=12OD=23. ∴E(2,-23). 7. (xx貴州銅仁)如圖,Rt△ABC中,∠C=90,AC=3,BC=4,D是AB上一點,DE⊥AC于點E,DF⊥BC于點F,邊接EF,則EF的最小值為 . 答案2.4 解析 如圖,連接CD. ∵∠C=90,AC=3,BC=4, ∴AB=32+42=5, ∵DE⊥AC,DF⊥BC,∠C=90, ∴四邊形CFDE是矩形,∴EF=CD. 由垂線段最短可得CD⊥AB時,線段EF的值最小,此時,S△ABC=12BCAC=12ABCD, 即1243=125CD,解得CD=2.4, ∴EF=2.4. 8. (xx山東青島)已知:如圖,在菱形ABCD中,點E,O,F分別是邊AB,AC,AD的中點,連接CE,CF,OF,OE. (1)求證:△BCE≌△DCF; (2)當AB與BC滿足什么條件時,四邊形AEOF是正方形?請說明理由. (1)證明∵四邊形ABCD為菱形, ∴AB=BC=CD=DA,∠B=∠D. 又E,F分別是AB,AD中點, ∴BE=DF. ∴△BCE≌△DCF(SAS). (2)解若AB⊥BC,則AEOF為正方形,理由如下: ∵E,O分別是AB,AC中點,∴EO∥BC, 又BC∥AD,∴OE∥AD,即OE∥AF. 同理可證OF∥AE,∴四邊形AEOF為平行四邊形,由(1)可得AE=AF, ∴平行四邊形AEOF為菱形. ∵BC⊥AB,∴∠BAD=90, ∴菱形AEOF為正方形. 提升能力 9. (xx山東濱州)如圖,在矩形ABCD中,AB=2,BC=4,點E,F分別在BC,CD上,若AE=5,∠EAF=45,則AF的長為 . 答案4103 解析取AD、BC中點M、N, 由AD=4,AB=2,易得ABNM是正方形,連接MN,EH,由∠HAE=45,四邊形ABNM是正方形,可知此處有典型的正方形內“半角模型”,故有EH=MH+BE.由AB=2,AE=5,易知BE=1,所以EN=BN-BE=2-1=1.設MH=x,由M是AD中點,△AMH∽△ADF可知,DF=2MH=2x,HN=2-x,EH=MH+BE=x+1,在Rt△EHN中有EN2+HN2=EH2,故12+(2-x)2=(x+1)2,解得x=23,故DF=43,故AF=AD2+DF2=4103. 10. (xx江蘇揚州)如圖,在平行四邊形ABCD中,DB=DA,點F是AB的中點,連接DF并延長,交CB的延長線于點E,連接AE. (1)求證:四邊形AEBD是菱形; (2)若DC=10,tan∠DCB=3,求菱形AEBD的面積. (1)證明∵四邊形ABCD是平行四邊形, ∴AD∥CE,∴∠DAF=∠EBF. ∵∠AFD=∠BFE,AF=FB, ∴△AFD≌△BFE,∴AD=EB. ∵AD∥EB,∴四邊形AEBD是平行四邊形. ∵BD=AD,∴四邊形AEBD是菱形. (2)解∵四邊形ABCD是平行四邊形, ∴CD=AB=10,AB∥CD, ∴∠ABE=∠DCB. ∴tan∠ABE=tan∠DCB=3. ∵四邊形AEBD是菱形, ∴AB⊥DE,AF=FB,EF=DF, ∴tan∠ABE=EFBF=3. ∵BF=102,∴EF=3102,∴DE=310. ∴S菱形AEBD=12ABDE=1210310 =15.?導學號16734129? 11.(xx安徽)如圖,正方形ABCD的四個頂點分別在四條平行線l1、l2、l3、l4上,這四條直線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0). (1)求證:h1=h3; (2)設正方形ABCD的面積為S,求證:S=(h2+h1)2+h12; (3)若32h1+h2=1,當h1變化時,說明正方形ABCD的面積為S隨h1的變化情況. (1)證明過A點作AF⊥l3分別交l2、l3于點E、F,過C點作CH⊥l2分別交l2、l3于點H、G, ∵四邊形ABCD是正方形,l1∥l2∥l3∥l4, ∴AB=CD,∠ABE+∠HBC=90, ∵CH⊥l2,∴∠BCH+∠HBC=90, ∴∠BCH=∠ABE, ∵∠BCH=∠CDG,∴∠ABE=∠CDG, ∵∠AEB=∠CGD=90, 在△ABE和△CDG中,∠ABE=∠CDG,∠AEB=∠CGD,AB=CD, ∴△ABE≌△CDG(AAS), ∴AE=CG,即h1=h3. (2)證明∵四邊形ABCD是正方形, ∴AB=BC=CD=DA, ∵∠AEB=∠DFA=∠BHC=∠CGD=90,∠ABE=∠FAD=∠BCH=∠CDG, ∴△AEB≌△DAF≌△BHC≌△CGD,且兩直角邊長分別為h1、h1+h2, ∴四邊形EFGH是邊長為h2的正方形, ∴S=412h1(h1+h2)+h22=2h12+2h1h2+h22=(h1+h2)2+h12. (3)解由題意,得h2=1-32h1, 所以S=h1+1-32h12+h12=54h12-h1+1=54h1-252+45, 又h1>0,1-32h1>0,解得0
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
-
中考數學總復習
第一篇
知識
方法
固基
第五單元
四邊形
考點強化練21
矩形、菱形、正方形試題
中考
數學
復習
一篇
第五
單元
考點
強化
21
矩形
菱形
正方形
試題
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
鏈接地址:http://italysoccerbets.com/p-5870942.html